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Abstract—Deep reinforcement learning has pro-
duced astonishing results in the past, however, most
of these stem from purely virtual domains. Many
challenges are faced when these methods are applied
in real-world robotic scenarios, the most fundamental
being the high sample-inefficiency, which is typically
associated with deep reinforcement learning methods.
Thus, this paper presents an extensive review of those
challenges and explores the capabilities of the recent
soft actor-critic algorithm, which indicates a new state
of the art for end-to-end learning of policies. We
deeply explore the algorithm first from a theoretical,
then from a practical perspective and examine how
the algorithm relates to the identified challenges in
the joint field of robotics and deep reinforcement
learning. Finally, we analyze the results attained by
the algorithm and compare these to other state of the
art methods.

I. Introduction
Reinforcement learning holds the potential to let an

agent autonomously learn optimal behavior for a specific
task, without the need of a human engineer designing
the desired behavior patterns. Naturally, this appears
promising for the field of robotics, since the agent can
be a robot, operating in a real-world setting. Significant
advances in the joint field of robotics and reinforcement
learning have been made with the recent breakthroughs
in deep learning, which allow the learning of high-level
features from raw sensory input [8]. These advances in
the field of deep learning make the high-level goal of end-
to-end learning of optimal policies, directly from high-
dimensional, raw, sensory input more attainable, produc-
ing astonishing results: RL in combination with methods
from deep learning, referred to as deep reinforcement
learning, has shown astonishing results at various tasks,
including superhuman performance on atari games [11],
continuous control on simulated physics tasks [3], precise,
dexterous manipulation through a robot hand [25] and
general robotic control (partly end-to-end) [15, 9].

While deep reinforcement learning has proven strong
capabilities in purely simulated or entirely virtual set-
tings, a wide array of challenges arises on real-world
robotic tasks. However, the recently introduced off-
policy, model-free actor-critic deep RL algorithm Soft
Actor-Critic (SAC) by Haarnoja et al. successfully tack-
les many of these problems and exhibits promising results
for the deep RL with robotics domain [21, 20].

II. Basics
In reinforcement learning, the key idea is to have

an agent autonomously learn desired behavior patterns,

through an trial-and-error based interaction with an
environment. More technically, the agent tries to accu-
mulate as much reward R as possible and through this
maximization learns which actions, in which state of the
environment, produce the highest reward, thus learning
behavior. The reward is a scalar value and received on
every time step of the environment, however, often the
agent receives zero reward and only a positive value on
completion of the task. To formalize, in reinforcement
learning scenarios, we always have a state function s ∈ S,
modeling the observations the agent makes and contain-
ing all relevant information for the current state of the
environment [7]. Further, reinforcement learning prob-
lems typically involve an action function a ∈ A, modeling
the actions the agent can execute. Both functions can
either be discrete or continuous, while not all algorithms
are capable of dealing with both cases.

For reinforcement learning with robotics, the action
function usually contains the motor torque to apply to
each joint. The state function is highly dependent on
the scenario, but for end-to-end reinforcement learning
problems, the state function could be the output of the
robot’s vision system.

Formally speaking, the behavior the agent is to learn
is denoted as the policy π and can be considered as a
mapping function from states to actions. The policy can
either be deterministic or probabilistic [7]. In the deter-
ministic case, the same actions are always executed in
the same state, so that π(s) = a. In probabilistic policies,
action is for a state is sampled from a distribution, so
that a ∼ π(s, a) = P (a|s)

Further, we must introduce the notion of a value
function. Value functions can express the total amount
of reward the agent can expect, given it starts in state
s and follows policy π, thus functioning as a goodness
measure of the states for a specific policy [23]. Formally,
the value functions for a state s is defined as

vπ(s) = Eπ

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣St = s

]
, for all s ∈ S (1)

where γ functions as a discounting factor, putting more
weight on reward that is expected in nearer future.

Similarly, the action-value function orQ-function mea-
sures the expected reward, given we are in state s, take
action a and follow policy π thereafter [23]. Formally, the
equation for the action-value function qπ(s, a) is almost
identical as for the value function vπ(s), but we also
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consider the selected action:

qπ(s, ) = Eπ

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣St = s,At = a

]
(2)

A. On-policy versus off-policy learning
In general, reinforcement learning algorithms can be

categorized into on-policy and off-policy methods. In on-
policy methods, we employ only one policy, meaning that
the same policy that is used to generate exploratory
behavior will be updated to become the optimal, final
desired behavior policy [23]. On-policy methods, how-
ever, are known to be affected by the exploration versus
exploitation dilemma [23]. To explore the dynamics of the
environment and discover the optimal behavior policy,
the algorithm must select actions in a non-greedy fashion,
since we can never know whether our current policy is
optimal, or whether there is a better one that can still
be explored. We say a policy is exploring when a non-
optimal action is selected (meaning a different action in
the same space has higher expected reward). The policy
is exploiting, when it greedily selects the action where
the highest reward is expected. The difference between
on- and off-policy methods is that off-policy methods
maintain multiple policies, usually one for generating
exploratory behavior and a second, target policy that
will be shaped into the optimal, final policy [23]. Thus,
off-policy methods do not face the exploration versus
exploitation dilemma, since the non-optimal, exploratory
part must not be integrated into the final policy, thus al-
lowing the final policy to greedily maximize the expected
reward. Off-policy methods have another advantage over
on-policy methods: They make it possible to reuse old
training data. In on-policy methods, training samples are
generated for and by the very current policy only. Since
off-policy learning allows us to update a policy other than
the one that was used to generate the behavior, we can
store past training experiences in a replay buffer, and
reuse the already collected experience to update the tar-
get policy. This enables learning multiple times from just
one experience [8]. This makes off-policy methods much
more sample efficient than on-policy methods, which is a
vital property for real-world robot reinforcement learning
settings [24, 26, 20, 21, 8, 15, 22].

B. Model-free versus model-based methods
Similar to on-policy and off-policy methods, reinforce-

ment learning methods can be categorized to be either
model-based ormodel-free. In model-based algorithms, we
employ a learned model of the environment, allowing the
algorithm to predict how the environment will respond
to the actions selected in any given state [23]. This model
can store probabilities of observing follow-up states (and
the reward associated with them), which allows for plan-
ning, where we consider future states without having
observed them in the current interaction [23]. Thus,

appropriate actions for a state are chosen by planning on
the learned model of the environment, with the underly-
ing idea that given enough sampled data, the learned
model will be close enough to the real environment
[5, 22]. Naturally, this is a statistically efficient way to
reuse past experiences sampled from the environment,
as each piece of experience is stored in the model of
the environment and thus used many more times for
predicting the best option to take [5]. However, while
model-based methods can work well on simple tasks with
low-dimensional state and actions spaced, they tend to
fail on complex, continuous state and action space control
tasks, due to model bias [22]. Model bias describes the
problem of model-based methods wherein the policy op-
timization step, regions of the environment are exploited
where insufficient data has been collected, leading to
catastrophic failure [22]. As the name implies, in model-
free reinforcement learning methods, such a model of
the environment is not learned [23]. Thus, in model-free
methods, planning for the future is not possible. Instead,
we directly learn either the action-value function or a
policy, which can produce the same optimal behavior as
in planned, model-based methods [5]. Recall the value
functions from Section II, which describe the value of
a state (or state and action) for a given policy. These
are the functions we learn in model-free reinforcement
learning, for example in Q-learning [23, 8]. Model-free
methods are less statistically efficient than model-based
methods and even simple tasks can require millions of
interaction steps sampled from the environment [21, 20,
22, 5]. That is because it can be very hard to learn
complex tasks, based on a random trial and error search
without a model of the environment. Think about travel-
ing from your workplace to your home without a model of
the environment (a map), by randomly turning at every
possible location. To summarize: In practice, learning a
model of the environment and planning actions would be
the more data-efficient approach. However, especially in
real-world robotic setting, this model is often simply to
complex to learn (think about humans interacting with
the environment as well, which could hardly be modeled
for), which is why model-based methods are mostly used
in purely simulated settings and in real-world tasks, we
have to rely on model-free methods.

C. Value-based versus policy-based methods
A final feature that we can use to categorize or describe

reinforcement learning methods is by whether they try to
learn a value function or a parameterized policy directly.
In value-based reinforcement learning methods, we try
to learn the optimal value-function (the Q-function) and
select actions according to the learned value of each
actions in each state. An example of this would again
be Q-learning [8, 23]. The policies used in value-based
methods heavily rely on that learned value function (for
example always taking the actions that produce the
highest expected reward), to such an extent, that the
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policies would not exist without the estimated action-
value function. However, learning the value-function is
not the only possible approach. We can also learn a
parameterized policy directly, that can select actions
without relying on an action-value function [23]. The cen-
tral idea in policy-based methods is to learn preferences
for taking an action in a state, that solely depend on
the reward that has been obtained using that action,
where a higher preference for an action means that
the action will be taken more often [23]. Note, that a
value function might still be used to learn the policy
parameters [23]. Thus, the key idea for policy-based
methods is that the parameters of the policy are enough
to select which action to take in which state. Thus,
policy-based methods also use a different notation for
the policy: π(a|s,θ) = Pr{At = a|St = s,θt = θ}. One
advantage policy-based methods have over value-based
methods is that the policy might simply be a much sim-
pler function to approximate than the value function [23].
A disadvantage, however, is, that policy-based methods
(at least policy gradient methods) are updated using
the total reward accumulated during one interaction
episode, thus only at the end of each transition. This is
problematic when we might never reach a terminal state,
due to very complex behavior.

D. Actor-critic architectures
In the previous section, we learned about value-based

and policy-based reinforcement learning methods. Now,
since the main algorithm in this paper is the Soft actor-
critic algorithm by Harrnoja et al [20], we will introduce
the actor-critic architecture here. As the name of the
algorithm implies, Haarnoja et al. use a soft version of the
actor-critic architecture, where soft relates to a stochastic
actor, instead of deterministic one as in the deep deter-
ministic policy gradient (DDPG) algorithm by Lilicrpa
et al [10]. The actor-critic architecture provides the bases
for most modern reinforcement learning algorithms and
tries to combine value-based and policy-based methods,
trying to combine the advantages of both. Thus, actor-
critic methods learn a policy, dubbed the actor and a
value-function, called the critic [23]. The critic learns to
approximate the value function, that is, at each time step
we observe a reward from the environment, and update
the critic to mimic that behavior, which is exactly what
the normal value function would do as well. Notice how
this was not possible for purely policy-based methods,
that could only be updated once the total reward for one
interaction episode had been observed. The actor is pro-
gressively updated to maximize the approximated value
function from the critic. This repetitive improvement of
the critic (value function) and the actor function (policy)
using that value function is a form of the generalized
policy iteration (GPI) algorithm [23]. In practice, we
often find neural networks as function approximators
for both the actor and the critic. This is, however, not
limited to actor-critic methods, but rather the general
trend and idea behind deep reinforcement learning.

III. Related Work

Here, we review major challenges currently faced in the
joint field of deep reinforcement learning and robotics.
We prioritized this over a review of other state of the
art algorithms for multiple reasons: First, few papers
go into depth regarding the challenges in applying deep
reinforcement learning in real-world robotics and only
mention these briefly. Second, this review is of more value
for the attendees of the class and third, Haarnoja et al.
already provide a comparison of SAC to other state of
the art methods, thus we redirect the interested reader
to said comparison in the paper by Haarnoja et al. [20].

Deep reinforcement learning methods are infamous
for being highly data inefficient. Even simple tasks can
require millions of exploratory steps until a near-optimal
policy is found. In simulated or purely virtual settings,
this is might not be a big problem, but for real-world
robotic applications, data generation in the real-world,
on expensive robots, through random interaction, is dan-
gerous [24]. If we were to apply classical reinforcement
learning methods, which achieve promising results in vir-
tual settings, to a robot, training would take impractical
amounts of time, and due to random exploration, the
robot would likely suffer critical damage in the process.
Thus, the poor sample efficiency of deep reinforcement
learning methods is often listed as one, if not the most
severe limiting factor for applying these methods directly
in real-world robotic scenarios [20, 21, 15, 25].

Reinforcement learning (specifically model-free rein-
forcement learning) is often described as a trial-and-
error search for optimal behavior. That is, we sample
from (interact with) the environment and receive some
measure of how good the actions we selected in each
situation were. Again, in a simulated setting, this is not
problematic. However, when the sampling process corre-
sponds to controlling the joints of an expensive robot,
we can only randomly try actions for a certain amount
of time until our robot is bound to take damage (or just
breaks down from wear and tear). Thus, in a real-world
robotic setting, we must ensure safe exploration and
try to minimize training/exploration time. This makes
minimal and safe exploration key aspects of applied deep
reinforcement learning in robotic settings [15, 20, 7]. One
option is to set the maximum allowed velocity for each
joint of the robot to limit damage during training, to
assure safe exploration, which has been done by Gu et
al. [15].

It is apparent, that real-world robotic scenarios emit
many properties which make reinforcement learning
harder in the physical domain harder, compared to a
purely virtual setting like atari games. Kober et al. list
many challenging aspects of reinforcement learning in
real-world robotics, including changing dynamics of the
robot due to wear and tear or hidden external factors
influencing sensory data, for example, light affecting the
vision system and thus the state representation [7].

Since training the real-world is clearly problematic, a
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valid approach would be to simply train reinforcement
learning algorithms in a simulated model of the real-
world environment, and transfer the final behavior policy
on the robot. Theoretically, with perfect simulations, this
would be possible. In practice, however, creating models
that accurately capture all behavioral dynamics of the
real-world environment is challenging and not always
realistic. Small imperfections in the simulated model
can cause the robot to learn a policy, which can not
directly be applied to the robot, and requires further
modification [7]. This mismatch between the simulated
model and real-world environment is known as the reality
gap or sim-to-real problem [17]. The sim-to-real problem
poses a research field on its own, and significant advances
have been made in recent years [17, 25]. The key point
is that simulating accurate real-world scenarios is a non-
trivial problem and policies learned in a simulation can,
without additional measures, not be applied on a real-
robot.

Another obstacle often encountered in robotic deep
reinforcement learning is that of sparse rewards or reward
engineering [7, 26, 14]. This describes the problem, that
in classical reinforcement learning, the reward is often
simply a binary measure. The environment emits one
reward upon the successful completion of the task at
hand. However, since many robot manipulation, or con-
trol, tasks are complex and require many steps before
completion, it is likely that the agent never reaches
the goal state by random exploration and thus never
observe positive reward. In such a case, the agent never
observes any variance in the reward function, which
renders learning impossible [7]. This gives rise to yet
another reinforcement learning subfield, dubbed reward
engineering. However, manually engineering a specific
reward function is a non-trivial task (requiring high-level
domain knowledge) and counter-acts one of the reinforce-
ment learning fundamental principals: Learning optimal
behavior through a trial and error search [26]. This often
causes learning to be entirely dependent on the manually-
designed reward function, which often requires more
complex state representations (e.g. additional sensors
for the robot), which in turn makes learning the state
space more challenging (curse of dimensionality) [7].
Further, reinforcement learning algorithms are notorious
for exploiting the reward function in a non-anticipated
manner, producing unintended behavior [7, 14]. This
effect is amplified by manually designing a complex
reward function, that tries to guide the agent through
specific regions of the state space.

To conclude this section, robotic deep reinforcement
learning for real-world interaction scenarios has many
challenging properties, rendering this a hard, yet promis-
ing, topic. The challenges reported in this paper in-
clude high sample-inefficiency, causing impractical train-
ing times, the need for safety measures for the robot to
prevent critical damage to the hardware and environment
during exploration, external factors affecting the state,
the reality gap making data collection in a simulation of

the environment challenging and finally sparse rewards,
describing the need for sophisticatedly designed reward
functions.

IV. Soft Actor-Critic
In early 2018, Haarnoja et al. published the first

version of the soft actor-critic algorithm [21]. However,
in late 2018, Harrnoja et al. published a refined version
of the algorithm in a second paper, improving upon
the original version of the algorithm [20]. Both papers
are similarly structured, and we adopt the structure for
the description of the main algorithm, as the separation
chosen by Haarnoja et al. appears very logical. in the
first of the two following sections, we will provide a
theoretical approach to SAC and in the second section,
a more practical, hands-on approach to the algorithm
is provided, as in both reference papers by Haarnoja et
al. [21, 20].

A. SAC in theory
The soft actor-critic algorithm is described by

Haarnoja et al. as an off-policy, model-free (actor-critic)
algorithm, that is applicable to real-world robotic learn-
ing [20]. The algorithm is based on the maximum entropy
reinforcement learning framework by Ziebart [6], which
enables learning of a stochastic actor. Stochasticity of the
actor is achieved by including an entropy regularization
term into the classic reinforcement learning objective
function. Thus, we no longer maximize the reward, but
also the entropy associated with each state under a
policy. This causes the actor policy to maximize the
reward while acting as random as possible. This soft
actor-critic, off-policy, model-free architecture has three
main advantages over reinforcement learning methods
that utilize the classical reinforcement objective without
the entropy regularization term: Firstly, the actor is
motivated to explore more widely, while giving up on
unpromising areas in the state-function [20]. Secondly,
the modified objective allows the policy to learn multiple,
optimal behavior patterns, and thirdly, it considerably
speeds up learning [20, 21, 19].

To formalize this idea, first consider the classical rein-
forcement learning objective

∑
t E(st,at)∼ρπ [r(st,at)] (the

sum of rewards), where we try to maximize that sum.
In the scope of this paper, ∼ denotes that we sample
from a distribution, thus, for the sum of rewards this
simply means that we select actions based on the policy
distribution for each state. Since SAC is based on the
maximum entropy framework, the entropy of each visited
state is maximized alongside the reward, producing the
following objective for the optimal policy π∗:

π∗ = argmax
π

∑
t

E(st,at)∼ρπ [r(st,at) + αH(π(·|st))] (3)

Here, H(P ) = Ex∼P − logP (x) is the entropy H of
the random variable x, having the probability density or
mass function P and α is the temperature parameter,
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Algorithm 1 Pratical soft actor-critic (adapted from [20])
Input: θ1, θ2, φ . Initial parameters
θ̄1 ← θ1, θ̄2 ← θ2 . Initialize target network weights
D ← ∅ . Initialize empty replay buffer
for each iteration do

for each environment step do
at ∼ πφ(at|st) . Sample action from the policy
st+1 ∼ p(st+1|st,at) . Sample transition from the environment
D ← D ∪ {(st,at, r(st,at), st+1)} . Store transition in the replay buffer

end for
for each gradient step do

θi ← θi − λQ∇̂QiJQ(θi) for i ∈ {1, 2} . Update the Q-function parameters
φ← φ− λπ∇̂φJπ(φ) . Update policy weights
α← α− λ∇̂αJ(α) . Adjsut temperature
θ̄i ← τθi + (1− τ)θ̄i for i ∈ {1, 2} . Update target network weights by fraction τ

end for
end for

Output: θ1, θ2, φ . Optimized parameters

weighting the entropy regularization term versus the
reward and controlling the degree of stochasticity of
the policy [19, 20, 21]. This is the older version of the
objective function, as used in the initial version of the
algorithm [21]. Here, α is treated as a hyperparameter,
thus allowing us to only use learn policies with a fixed
degree of stochasticity. However, Haarnoja et al. report
that correctly adapting the α hyperparameter for every
task was a non-trivial problem and that choosing non-
ideal values for the hyperparameter could drastically
decrease the performance of the SAC algorithm [20].
To address this problem, Haarnoja et al. found a way
to automatically adjust the α hyperparameter during
training, by treating the entropy term as a constraint.
Thus, the new goal becomes to find a stochastic policy
with maximum return, that satisfies a minimum amount
of expected entropy:

maxEρπ
π0:T

[
T∑
t=0

r(st,at)
]
subject to:

E(st,at) ∼ ρπ[−log(πt(at|st))] ≥ H ∀t
(4)

Here, H is the minimum amount of expected entropy
to be satisfied by the policy. Haarnoja et al. provide an
extensive derivation of an adjusted version of the GPI
algorithm (which is used to learn the actor and critic
functions in actor-critic methods), dubbed soft policy
iteration, to learn value function and policies in the
maximum entropy framework. Further, Haarnoja et al.
provide a formal proof for convergence of the soft policy
iteration algorithm. However, we chose not to repeat this
in this seminar paper, as it does not provide significantly
more insight into the idea behind SAC. Instead, we now
move on to explore the practical version of the SAC
algorithm.

B. SAC in practise
Even though Haarnoja et al. provide methods that

allow to recursively solve for the optimal policy that
satisfies the constraint in Equation IV-A, the practical al-
gorithm relies on neural networks as function approxima-
tors for the Q-function and the policy [20, 21]. The well-
known gradient descent algorithm is used to optimize
the function approximators [20, 21]. This is necessary,
because the soft-policy iteration algorithm, which would
be used to find the optimal policy satisfying Equation
IV-A, only works for discrete domains [21]. However,
real-world robotic settings can hardly be discretized,
requiring continuous actions and environments. Thus,
Haarnoja et al. provide the practical version of the algo-
rithm, using neural networks as function approximators
for the soft Q-function and the policy. We will now
explore how to compute the gradients for these neural
network function approximators. For that, we must begin
by introducing the soft state value function, which in
turn allows us to compute soft Q-values for the soft
policies [20]. The soft state value function allows us to
determine the soft Q-values, according to the maximum
entropy objective and is given by [20]:

V (st) = Eat∼π[Q(st,at)− α logπ(at|st)], (5)

The soft Q-function is parameterized by θ. The soft Q-
function parameters are trained to minimize the follow-
ing Bellman residual [20]:

JQ(θ) = E(st,at)∼D[
1
2(Qθ(st,at)− (r(st,at) + γEst+1∼ρ[Vθ̄(st+1)]))2

] (6)

Here, ∼ D means that we sample from a replay
buffer, which is typical for off-policy methods as this
allows us to reuses old experiences. We find that the
soft value function is implicitly parameterized by θ̄,
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Fig. 1: Results of the simulated benchmark experience. Figure taken from [20]

which represents the use of target networks [20]. Target
networks are always updated by a fraction of the weights
of their non-target, up-to-date counterpart and have been
shown to stabilize training [11]. We can observe that the
Bellman residual measures the difference between the two
sides of the equation. Thus, the Bellman residual will
be small, when both sides are similar. Baired reports
that as long as the Bellman residual is non-zero, the
policy is no yet optimal [2]. As suggested by Baired,
Haarnoja et al. train the soft Q-function to minimize
the Bellman residual. For this, the stochastic gradient
of Equation IV-B is used. Further, Haarnoja et al. train
two independent soft Q-functions with parameters θi and
use the minimal one of the two to compute the stochastic
gradient [20]. This has been proposed by Fujimoto et al.,
who showed that the double clipped Q-learning trick can
mitigate overestimation bias in the value function [18].
Additionally, Haarnoja et al. report that this significantly
speeds up learning on challenging tasks [20].

The soft policy function approximator is parameter-
ized by the vector φ. The parameters of the soft policy
learned by minimizing the following objective [21, 20]:

Jπ(φ) = Est∼D

[
DKL

(
πφ(·|st)

∣∣∣∣∣∣∣∣exp( 1
αQ

πold
θ (st, ·))

Zπold
θ (st)

)]
(7)

Here, Haarnoja et al. exploit the Kullback-Leibler
divergence. We can think about the Kullback-Leibler
divergence as a measure of the difference between two
probability distributions [1]. Thus, for the case of SAC,
we minimize the distance between the current policy
and the exponential of the soft Q-function, normalized
by some intractable function Z. By approximating the

gradient of Equation IV-B, we can again make use of
stochastic gradients and gradient descent to update the
parameters of the soft policy, as for the parameters of
the soft Q-function.
Finally, without going fully into depth, the automatic

update of the temperature parameter α (that controls the
degree of stochasticity associated with the soft policy)
is updated by computing the dual gradients for the
following objective:

J(α) = Eat∼πt [−α log πt(at|st)− αH̄] (8)

Dual gradient descent is a popular method for optimizing
dual lagrangian problems, thus, to optimize an objective
subject to a specific constraint [4]. Thus, Haarnoja et
al. apply the dual gradient method to update the tem-
perature value, which subjects the policy to satisfy a
minimum amount of entropy.

This covers all the relevant updates for the practical
implementation of the soft actor-critic algorithm. The
full algorithm is presented in Algorithm 1.

V. Results and Discussion
Haarnoja et al. conducted three distinct experiments

in their paper, introducing the adjusted version of the
SAC algorithm featuring automatic learning of the tem-
perature parameter α [20]. The first experiment poses a
simulated benchmark scenario, providing a comparison
to other, on-policy and off-policy methods. The results
for the benchmark experiment mostly used OpenAI gym
suite [12], with the exception of complex, 21-dimensional
Humanoid (rrlab) environment [13]. The results are
shown in Figure 1. In the benchmarking experiment,
the DDPG algorithm by Lilicrpa et al. [10] serves as a
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Fig. 2: Quadropedal walking experiment. From left to right: Training scenario, stairs setting, bricks setting, hill
setting. The policy was only trained on the training scenario. Images taken from [20].

comparison to a different, off-policy algorithm. Further,
DDPG is considered to be one of the more data-efficient
off-policy methods, thus being closely related to the
SAC algorithm. In fact, SAC can be considered as a
stochastic version of the DDPG algorithm, because the
main difference between the two is that SAC learns
stochastic policies (due to the entropy objective), while
DDPG learns deterministic policies. The TD3 by Fuji-
moto et al. [18] can be considered an extension to the
DDPG algorithm, where the double Q learning has been
introduced and applied to the DDPG algorithm. Thus
the TD3 algorithm is even more similar to SAC than
DDPG, since SAC also applied the double Q learning
trick, again with the difference that SAC learns stochas-
tic policies, while TD3 learns deterministic ones. Finally,
the PPO algorithm by Schulman et al. [16] serves as
an efficient and stable representative for the on-policy
methods family. The key findings to take away from this
benchmark are the following: SAC performs comparably
well than the other state of the art methods on the easier
tasks but significantly outperforms them on the more
challenging tasks (Humandoid-v2 and Humanoid rllab).
Note, that both the DDPG and TD3 algorithm fail to
make any progress on the complex environments. This is
not surprising since the DDPG algorithm (and its vari-
ations) tend to fail at tasks featuring high-dimensional
spaces [20]. Still, even on most simpler scenarios, SAC
tends to show better sample efficiency than the other
two off-policy methods. Further, we can observe that
the PPO algorithm (on-policy) had not yet reached
convergence, specifically on the complex rllab humanoid
scenario. This behavior is as antisipated since PPO is an
on-policy method, which typically requires more data to
converge. It is possible, that the algorithm would reach
similarly strong results (possibly outperforming SAC),
but as stated in the Related Work section of this paper,
sample efficiency is a crucial criterion for real-world
robotic reinforcement learning. The results attained by
SAC on the simulated benchmark experiment indicate
that SAC exceeds the current state of the art both in
sample efficiency and final performance [20].

Further, two real-world robotic experiments have been
conducted. We will only briefly report on these here.
The first of the two real-world tasks applies the AC
algorithm to a small, quadrupedal minitaur robot, with
the goal of learning walking gaits [20]. SAC successfully
learns to walk within 2 hours of real-world training,
over roughly 400 episodes of maximal 500 steps [20].

Further, the learned policy generalized well to unseen
territory. The policy has been trained on a flat surface,
but could, without further training, walk up and down
a slope, burst through a small wooden brick wall and
climb small stairs [20]. While these results are promis-
ing, it must be noted that Haarnoja et al. conducted
some reward engineering. Specifically, the value functions
penalize large pitch angles and the extension of the
front legs under the robot [20]. Haarnoja et al. do not
provide results for a version of the algorithm that did
not use this value function. Thus, we can not know
to which extent the manually designed value function
impacted the exciting results reported by Haarnoja et
al. Nevertheless, this experiment is likely to be the first
example for a deep reinforcement learning method that
learned an underactuated quadrupedal locomotion task
directly in the real-world, without using any simulated
pretraining [20]. See Figure IV-B for images from the
experiment 1.
Finally, the second real-world tasks involved a 3-finger

dexterous robotic hand, that had to learn to rotate a
valve-like object into the correct position, directly from
the RGB images perceived by a stationary camera [20].
This is extraordinarily challenging tasks, due to the
challenging, end-to-end perception system of the state
and the physical difficulty of rotating the valve with a
complex, 9 degrees of freedom hand [20]. However, the
robot learned correct finger gaits to rotate the valve
from a random starting position to the desired target
position, within 20 hours of real-world training (including
reset and neural network training times), over 300k envi-
ronment interaction steps [20]. Thus, SAC is capable of
learning complex manipulation tasks, without manually
enhanced reward functions, directly in an end-to-end
manner. Further, when the image perception system
is replaced and the valve position is directly fed into
the neural network function approximator, learning only
took 3 hours, which is substantially faster than previous
results on the same task (PPO, 7.4 hours) [20, 27].

Concluding the results section, the SAC algorithm by
Haarnoja et al. outperforms the existing state of the
art methods on high-dimensional, continuous domains,
which are typical for real-world robotic scenarios. Fur-
ther, SAC can learn directly from raw sensory input,
without the need for simulated pretraining, which has

1The project website features videos of training and testing:
https://sites.google.com/view/sac-and-applications/
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been demonstrated in two distinct settings. These excit-
ing results are obtained by including the entropy into
the reward function, motivating the agent to explore
more widely and allow to learn multiples modes of near-
optimal behavior, which produces robust policies that
generalize well to unseen variations of the environment.

VI. Conclusion
The SAC algorithm by Haarnoja et al., specifically

the newer version of the algorithm with automatic tem-
perature adjustment, indicates a new state of the art
on high-dimensional continuous problems. This makes
the algorithm attractive for real-world robotic scenarios,
which often emit such properties. Mainly, this is achieved

by significantly speeding up the learning process by
exploiting the entropy associated with specific states.
The problem of safe exploration, or how this might
be affected by the entropy object, is not addressed by
Haarnoja et al. Further, Haarnoja et al. used slightly
modified reward functions for the quadrupedal locomo-
tion task. Sadly, a baseline condition using the unaltered
reward function is not provided. Thus, it is impossible
to know to what extent the manipulated reward function
contributed to the performance of the algorithm, which
is critique-worthy. Apart from this, the paper presents
exciting results, which contributed heavily towards the
goal of learning policies for complex tasks in an end-to-
end manner, directly in the real world.
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