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Abstract

Abstract

This document acts as an addendum to the bachelor thesis “Scale Estimation
in Visual Object tracking* [3]. Here, we address minor flaws, changes and other
improvements that were made after the submission of the final thesis. The hyper-
parameter optimization has been partially redone, as some hyperparameters that
were dependent have been optimized independently of one another. Further, slight
changes have been made to the Candidates algorithm, which results in slightly
better results. Lastly, the configuration of the HIOB tracker has not been ideal,
which has also been addressed. The DSST algorithm by Danelljan et al. has not
been changed or adjusted [1]. Thus, the experiments that are affected by the above
mentioned changes have been repeated and the final results are presented.

Zusammenfassung

Dieses Dokument stellt einen Nachtrag zu der Bachelorarbeit “Scale Estimation in
Visual Object tracking“ dar [3]. Hier addressieren wir kleinere Méangel, Anderun-
gen und andere Verbesserungen, welche nach der Einreichung der finalen Arbeit
vorgenommen wurden. Die Hyperparameteroptimierung wurde teilweise erneut
durchgefiihrt, da einige abhangigde Hyperparameter unabhéngig voneinander opti-
misiert worden waren. Auerdem wurden kleine Anderungen an dem “Candidates
Algorithmus vorgenommen, welche zu besseren Ergebnissen fiihren. Abschlieend,
wurde die Konfiguration des HIOB Trackers angepasst, da diese nicht optimal
war. Der “DSST* Algorithmus nach Danelljan et al. wurde weder angepasst noch
gedndert [1]. Dementsprechend wurden die Experimente, welche von den genannten
Anderungen betroffen sind, wiederholt und die Ergebnisse werden prisentiert.
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Chapter 1

Addressing the original results

Here, we will quickly address the results regarding the performance of the algorithm
in Candidates algorithm, which were presented in the original work and how they
were affected by a non-optimal tracker configuration.

1.1 Tracker configuration

In the original work, we were not able to reproduce similarly good results that were
previously reported by Heinrich et al. [2]. That is, without using either one of the
two implemented scale estimation algorithms, we were not able to achieve compa-
rable results, for the baseline HIOB tracker. After the thesis had been submitted,
the root of this problem has been identified to be a non-optimal configuration of
the baseline HIOB tracker. Concretely, a hyperparameter had not been set, that
controlled the resolution of the CNN produced feature map. This caused HIOB to
use the default value of 25 times 25 pixels for the feature mask parameter. In the
original thesis, in chapter 4, exemplary images of the feature map are provided,
where we can inspect the low resolution of the feature map. A second, additional
parameter had not been set ideally. This parameter controls HIOBs internal sroi
size, which controls the size of the image that will be fed into the static CNN.
Thus, this parameter has been fixed and set to 360 times 360 pixels. The value has
been selected since it indicates a reasonable tradeoff between the computational
load and the quality of the tracking results [2].

The consequences of this non-ideal hyperparameter setting will be explored in
greater detail in section 2.3

1.2 Non-ideal hyperparameter optimization

As mentioned in the previous section, some hyperparameters were not set op-
timally. These hyperparameters are based on the core HIOB tracker, as imple-
mented by Springstiibe [4]. However, the second set of hyperparameters has been
introduced by Rietz, which controls the behavior of the two implemented scale
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Chapter 1. Addressing the original results

estimation algorithms [3]. To determine the optimal setting for these newly in-
troduced hyperparameters, a hyperparameter optimization had been conducted.
However, one mistake had been made in the optimization of the Candidates al-
gorithm: The hyperparameters inner punish threshold and outer punish threshold
had been optimized independently of one another. This is critical since the direct
interplay of these two parameters controls how each scaled candidate is rated (see
Section 4.2.2 of the original thesis for an in-depth explanation of how these two
parameters interact [3]).

In this addendum, the interplay of these parameters has been considered and
an exhaustive grid search has been conducted to determine the optimal setting
for the two dependent hyperparameters. See section 2.4 for the results of this
optimization.



Chapter 2

Changes and adjustments

In this chapter, we quickly examine the changes that were made to achieve the
results presented in chapter 3. Mainly, the way the punishment score for each can-
didate is calculated has been slightly adjusted. Beyond that, we conducted a grid
search regarding two specific hyperparameters, adopted the proper configuration
values for the underlying HIOB tracker and did some minor refactoring, which
resulted in a prominent speedup of the scale estimation process.

2.1 Rating a candidate

As described in chapter 4 of the original bachelor thesis, each candidate that is
generated during the attempt to estimate the scale of the object, is rated based on
two scores: the Outer punish value (OPV) and the Inner punish value (IPV) [3].
Further, the IPV is calculated based on the hyperparameter inner punish threshold,
which captures the threshold below which a candidate’s rating gets punished for
containing poor likelihood values, as indicated in the CNN feature heat-map. Thus,
the TPV part of the overall rating each candidate receives tries to control the
theoretical growth of the candidates. If it were not for this IPV score, the best
tactic for the algorithm would be to simply increase the size of the object as much
as possible, to obtain the highest possible score for the OPV, since the rating is
dependent on the total sum of all likelihood for one candidate. Simply put, the IPV
score punishes a candidate for containing pixel values that have a low likelihood
of belonging to the target object, as indicated by the feature map, and serves as a
counterpart to the OPV score. Thus, the interplay of the two scores (and thus the
interplay of the two hyperparameters) controls how each scale candidate is rated.

In the original version of the algorithm, the IPV score had been obtained from
summing up the values on the feature map that fell below the parameterized thresh-
old. While this is not systematically incorrect, note that those values are smaller
than the parameterized threshold. Thus, this IPV value was always relatively small
compared to it’s OPV counterpart. This is because for the OPV, we sum up good
(thus high) values on the feature map and for the IPV, we sum up bad (thus low)
values.
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(a) Sroi image (b) 25 x 25px (c) 46 x 46px (d) 100 x 100px

Figure 2.1: An examplary frame, alongside the CNN feature maps at increasing
resolutions

As a consequence, the calculation for IPV has been adjusted, to raise its in-
fluence on the overall rating to be equal to that of the OPV score. Now, instead
of directly summing the likelihood values on the feature map (which fall below
the threshold given by the inner punish threshold parameter), we sum up 1 minus
that value. Since the feature map contains values between one and zero we can
say that we no longer sum the probability of a pixel value belonging to the object,
instead, we sum the inverse probability of that pixel belonging to the object (as
indicated on the feature map). Thus, the importance of the IPV score is raised in
the updated implementation.

By changing the importance of the IPV score, we're able to achieve slightly
increased results in the success metric. See Figure 2.3 for a comparison of the
success scores achieved by the two different implementations.

2.2 Refactoring

The adapted version of the HIOB tracker, that had been produced in the scope
of the original bachelor thesis and produced the final results that are presented in
the thesis, contained some redundant calculations. These resulted from persuing
multiple possible solutions to various problems that were encountered during the
adaptation of the HIOB tracker. For the results that are presented in the final
chapter of this addendum, these redundant calculations have been identified and
removed, which caused a notable speedup in the scale estimation process.

2.3 Optimal hyperparameter settings

As mentioned in section 1.1, some parameters were not set optimally in the config-
uration file. This has been corrected. To visualize the consequence of the feature
mask parameter, consider the images of the feature map in Figure 2.1. Here, the
higher resolution of the feature map provides a clearer, more precise representation
of the object. Intuitively, we can expect better results using this representation.
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(a) Size graph of Candidates algorithm using (b) Size graph of Candidates algorithm using
46 x 46px feature mask. 100 x 100px feature mask.

Figure 2.2: Comparasion of the size graphs of the Candidates algorithm (static
aspect ratio, max execution strategy) using different feature mask resolutions, to
underline the effect of the parameter for scale estimation results.

It should be noted, that a higher resolution of the feature map comes with an
increased computational load.

It is apparent, how specifically the Candidates algorithm is affected by the
resolution of the feature map since the Candidates algorithm operates directly on
the feature map. Specifically, the Candidates algorithm evaluates scaled candidates
(here, a candidate simply refers to a bounding box), by mapping the candidate onto
the feature map. By having a feature map of higher resolution, this enables the
algorithm to make a more precise adjustment to the changing scale of the object.

See Figure 2.2 for an example where we can observe better scale estimation
results as a result of a higher resolution in the feature map.

The implementation of the Discriminative Scale Space Tracking (DSST) al-
gorithm is only indirectly affected by the change in the hyperparameter setting.
The DSST algorithm operates independently of the feature map, specifically, on
a Histogram of oriented Gradients (HOG) scale-space representation of the tar-
get object [1]. Thus we can expect better results from the DSST algorithm, as a
consequence of the overall better performance of the HIOB tracker.

2.4 Exhaustive grid search

As explained in section 1.2, the hyperparameter optimization that had been con-
ducted in the original thesis was flawed with respect to the two dependent hyperpa-
rameters inner punish threshold and outer punish threshold. We already mentioned
in the original thesis that the separate optimization of the two hyperparameters
was not ideal [3]. However, we were unable to react to this understanding while
staying within the limit of the deadline for the submission of the thesis. Hence, we
can only address the problem in this addendum.
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Figure 2.3: Results of the grid search on the parameter space to determine the op-
timal values for the inner punish threshold and outer punish threshold parameters

For this addendum, we conducted an exhaustive grid search on the parameter
space to determine the ideal values for the two hyperparameters. We tested each
pair of combinations of values for the two hyperparameters. Since the Candidates
algorithm itself has been slightly changed in the meantime, the grid search has
been executed for both versions of the algorithm. The results from this grid search
are visualized in Figure 2.3.

From Figure 2.3 we can observe that the highest success score of the old punish-
ment implementation (which summed the direct probability values that are smaller
than the IPV threshold) achieves the maximum success score of 0.46 on the train-
ing set. For the new implementation of the punishment calculation, the highest
achieved success score is 0.51. With the new implementation of the punishment
calculation, we can observe interesting results for the IPV parameter space between
0.1 and 0.2. Here, the Candidates algorithm exclusively achieved a success rating
greater than 0.4.

For the Candidates algorithm using the old punishment implementation, the
results in this area of the parameter space look very different. We can observe
that with the old punishment implementation, we achieved alarmingly low success
scores, around 0.1. Considering again how this metric is calculated, this score cor-
responds to an overlap between the predicted bounding box and the ground truth
bounding box of roughly 10% during tracking. Those poor success scores empha-
size the problem with the old punishment calculation. When the IPV threshold is
set to 0.2, we only punish a scaled candidate for containing locations that have a
probability of belonging to the object that is smaller than 0.2. For all those pixel
locations, the values (that are smaller than 0.2) are then summed up. Comparing
this to the OPV threshold, we punish the scaled candidate for not containing pixel
locations with a probability greater than, for example, 0.7. Summing up values
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greater than 0.7 produces a sum that will be greater than summing values smaller
than 0.2 (as long as the amount of elements in the sum is roughly equal). This
explains why the old punishment implementation achieved such low results in the
parameter space between 0.1 and 0.2: The computed I[PV value is so small com-
pared to the OPV value, that the best strategy for the algorithm is to make each
candidate as large as possible, to minimize the OPV value.

Considering the new implementation of the punishment calculation, this effect
has been negated. We now achieve the best results when we set the IPV thresh-
old to a lower value. This means, that the importance of the hyperparameter has
been raised and we now only punish a candidate for containing pixel locations
with very low (smaller than 0.1) probabilities for belonging to the target object.
However, since we now add 1 — probability of belonging to target for each bad pixel,
this produces a large sum, whose impact on the overall rating of each scaled can-
didate is large enough, so that candidates that contain many pixel locations of low
probability are punished drastically harder.
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Chapter 3

New results

In this chapter, we will present newly obtained results, which result from the most
recent version of the HIOB tracker, where the changes from chapter 2 have been
applied. Similar to the structure in the original thesis, we will broadly cover the per-
formance of the tracker on the TB100 dataset and the NICOVISON dataset. Fur-
ther, we will conduct a brief case study on selected sequences from both datasets,
which aims at gathering a more profound understanding of the capabilities of the
improved tracker.

3.1 Results on the TB100 dataset

For now, we will focus on the results the tracker achieved on the TB100 dataset. As
for the majority of the original thesis, our main focus lies on the success metric, as
this metric measures the overlap between the predicted and ground truth bounding
box. We can expect that progress on the scale estimation module of the tracker
directly affects the success metric, as better scale estimation correlates with a
higher overlap between the prediction and the ground truth bounding box.

Before we begin analyzing the results, we should explain how to read the legend:
Each legend entry begin with the achieved metric score (either precision or succes)
and is followed by the name of the algorithm, that achieved the metric score.
This can either be the baseline (No SE), the HIOB tracker with the Candidates
algorithm for scale estimation or the HIOB tracker with the DSST algorithm for
scale estimation. Next, for both the Candidates or DSST algorithm, either dyn. or
stat. is reported. This refers to the aspect ratio of the generated bounding boxes.
In this context, stat. means that both the x and the y axis the given bounding box
is scale by the same factor, in order to generate scaled candidates for evaluation.
Thus, the aspect ratio of the bounding box is given on the initial frame and remains
static over the entire tracking sequence. The other abbreviation, dyn. means that
scaled candidates with a dynamic aspect ratio are generated for evaluation. These
are evaluate in the same way as the other scaled candidates. The motivation behind
this was to partly tackle the problem of in-plane-rotation, as stated in the original
thesis [3].
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—— 0.535 No SE (HGC) [46, 46) ~—— 0.544 No SE (HGC) [100, 100]
Figure 3.1: Success scores of the of both algorithms and the baseline on thr TB100
dataset. The best version of each algorithm is highlighted in bold.

Following the aspect ration indicator, the labels max and CWS correspond to
the execution strategy of the scale estimation module. The motivation for this has
been drawn from Springstiibes original work [4]. Since the scale estimation module
can be configured independently of the main tracker, new names have been intro-
duced for the execution strategies. The max strategy executes the scale estimation
module on every frame, aiming at a continuous and smooth scale prediction, thus
mazimizing the scale calculations. The confidence window strategy (CWS) only
executes the scale estimation module on frames that fall in a specified confidence
range, where the confidence is a score calculated by HIOB to measure how certain
HIOB is regarding the predicted object position. These strategies are explained
in greater detail by both Springstiibes and Rietz [3, 4]. Finally, the value in the
brackets denotes the feature map resolution, for which two values have been tested.

Equipped with the above, consider Figure 3.1. The figure shows the success
scores each version of the algorithm achieved on the TB100 dataset. For each algo-
rithm (Candidates, DSST, Baseline with static size), the version of the algorithm
with the highest success score has been highlighted. These results diverge in multi-
ple aspects from the results obtained and reported in the original theses!. Firstly,
the reported difference between the baseline, the Candidates and the DSST algo-
rithm was marginal [3]. Secondly, on the TB100 dataset, the highest success score

LA slightly improved version of the graphs results reported in the original thesis can be found
in the appendix
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3.1. Results on the TB100 dataset
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--------- 0.759 Candidates dyn. CWS [46, 46] ----- 0.764 DSST dyn. CWS [46, 46]

+ 0.788 Candidates dyn. max [100, 100]  ---- 0.738 DSST dyn. max [100, 100]
--------- 0.815 Candidates dyn. max [46, 46] ----- 0.711 DSST dyn. max [46, 46]
--------- 0.728 Candidates stat. CWS [100, 100] 0.768 DSST stat. CWS [100, 100]
--------- 0.767 Candidates stat. CWS [46, 46] 0.792 DSST stat. CWS [46, 46]
-~ 0.800 Candidates stat. max [100, 100] 0.779 DSST stat. max [100, 100]
- (0,840 Candidates stat. max [46, 46] 0.782 DSST stat. max [46, 46]
—— 0.775 No SE (HGC) [46, 46] —— 0.794 No SE (HGC) [100, 100]

Figure 3.2: Precision scores of the of both algorithms and the baseline on thr TB100
dataset. The best version of each algorithm is highlighted in bold.

was obtained by the DSST algorithm using the dynamic aspect ratio implementa-
tion and the continuous execution strategy.

In the results presented in Figure 3.1, we can observe that the Candidates al-
gorithm achieves distinctly better results that not only the baseline of the HIOB
tracker but also DSST scale estimation algorithm. This can be attributed to the
improved punishment calculation of the Candidates algorithm and the higher res-
olution of the CNN feature map (keep in mind that in the original thesis, the
feature map was of resolution 25 x 25px). For the Candiates algorithm, we can
further observe that the maz execution strategy performs drastically better than
the CWS counterpart. This effect was not identifiable in the results presented in
the original thesis. It is likely, that the non-ideal hyperparameter configuration
acted as a ceiling effect because the poor tracking accuracy implicitly made the
scale estimation problem much harder. Interestingly, the version of the Candidates
algorithm which achieved the highest results didn’t operate on a 100 x 100px fea-
ture map. Intuitively, one would expect better results of the algorithm, the higher
the quality of the input feature map is. However, this is exactly what is causing the
results in Figure 3.1. So far, we didn’t consider the precision metric, even though
there is a clear correlation between the precision and the success scores, since the
precision metric measures center distance between the predicted and the ground
truth bounding box.

With this in mind, consider Figure 3.2. We can observe that the best perform-
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Figure 3.3: Success scores of the of both algorithms and the baseline on the NICO-
VISION dataset. The best version of each algorithm is highlighted in bold.

ing version of the Candidates algorithm with the 46 x 46px feature map has a
higher precision rating than its 100 x 100px feature map counterpart. Thus, to a
certain extent, this explains why the 46 x 46px version of the Candidates algorithm
achieved a higher success score than the 100 x 100px version. The 100 x 100px ver-
sion had slightly worse tracking input, in terms of precision. Since HIOB generated
random positional candidates to find the most likely position for the target object
in any frame, tracking results on one sequence vary slightly. Consequently, this
also manifests in the success metric and thus affects the scale estimation process.
This influence is evidently bidirectional, meaning that dramatic failure of the scale
estimation will corrupt HIOBs internal object representation so that HIOB could
start considering the background part of the object. However, the takeaway here
is that we must consider the precision metric when we reason about the success
metric and the performance of the scale estimation module.

Regading the DSST algorithm, we can observe a much smaller range of success
scores. Further, the DSST algorithm still only indicates very slight improvements
over the baseline of not running the scale estimation module. We will explore
this in greater detail in the sequence analysis. Since the success scores are in such
close range, we can hardly make any meaningfull arguments regarding the different
versions of the algorithm. Except that there are no significant differences between
the versions.

The main take away of these results is the finding, that convolutional features

12
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Figure 3.4: Precision scores of the of both algorithms and the baseline on thr
NICOVISION dataset. The best version of each algorithm is highlighted in bold.

show strong potential for scale estimation and allow for a drastically better results
compared to the baseline, on a generic and very broad sequence dataset.

3.2 Results on NICOVISION dataset

Now, we will explore the results on the NICOVISION dataset. The success plot for
the NICOVISION dataset drastically differs from one for the TB100 dataset. Both
scale estimation algorithms achieve worse success scores than the baseline, while
the DSST algorithm performs notably better than the Candidates algorithm. We
can conclude from this, that the NICOVISION dataset features a set of properties,
that not only make scale estimation, in general, harder but also favors the DSST
algorithm. The difference between the two datasets has already been noticed by
Heinrich et al., who describe strong occlusion by the robot’s hands of the object
[2]. As already reported in the original thesis, the strong occlusion makes scale
estimation on the NICOVISION dataset extremely challenging [3]. Many sequences
of the NICOVISION dataset feature NICO grasping an object, followed by rotation
or moving the object closer to the cameras. This adds additional complexity to the
scale estimation problem, which refers to recognizing an object at different scales.
In the NICOVISION dataset, we instead have to deal with a changing scale under
the significant transformation of the object (when the object is rotated).
Considering that the DSST algorithm achieved drastically higher scores than

13
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the TB100 sequence RedTeam the TB100 sequence Twinnings

Figure 3.5: Selected size plots of the Candidates algorithm on the TB100 dataset,
indicating strong scale estimation capabilites using using convolutional features.

the best performing version of the Candidates algorithm on the NICOVISION
dataset allows us to conclude, that the HOG feature representation has some ad-
vantages over the convolutional feature for scale estimation on this challenging
dataset. For example, the HOG feature representation is a form of edge image
(since it consists of image gradients) and as a consequence might be more robust
to the changing appearance of the object during manipulation.

We will explore what causes the different results on the NICOVISION dataset
in-depth in subsection 3.3.2.

3.3 Selected sequence analysis

In this section, we explore and explain the results of both algorithms by looking
at representative and interesting sequences from both datasets.

3.3.1 TB100 sequences

For the TB100 dataset, we find many sequences which indicate a high potential
for accurate scale estimation using convolutional features, exemplary size plots of
such sequences are given in Figure 3.5. However, for the sake of a fair comparison,
we want to critically discuss the weaknesses of both scale estimation algorithms,
specifically of the Candidates algorithm. Thus, we picked one example, where the
baseline implementation of the HIOB tracker achieved good results (0.57 success
score), but the Candidates candidates algorithm obtains alarmingly bad results
(CWS: 0.21, MAX 0.37 success). Consider the size plots in Figure 3.6. Note how
the ground truth size of the object doesn’t change throughout the entire tracking
sequence. While it is unrealistic that an object doesn’t change its size at all during

14
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(a) Size plot of the Candidates algorithm (static (b) Size plot of the Candidates algorithm (static
aspect ratio, continous execution strategy) on aspect ratio, CWS execution strategy) on the
the TB100 sequence Bird! TB100 sequence Bird!

Figure 3.6: Selected size plots of the Candidates algorithm on the TB100 sequence
Bird1, as an example of poor scale estimation performance using convolutional
features.

navigation in a 3D scene, note how such an annotation essentially eliminates the
need to estimate the scale. This strongly favors the HIOB baseline, where we never
change the size, by always having because we always have a perfect size.

Further, notice how independently of the execution strategy, the scale predicted
by the candidates algorithm decreases significantly, even though the ground truth
object does not change its size. While the comparison to the baseline is not fair
due to imprecise annotation, we will still explore what caused both versions of
the Candidates algorithm to perform this poorly. To understand this behavior,
consider the images in Figure 3.7, which show the convolutional feature map and
the SROI image of selected frames for the TB100 sequence Bird]l.

For both execution strategies, the Candidates algorithm predicts a strong de-
crease in the size in the very beginning of the sequence. For the MAX execution
strategy, this happens gradually, as the scale change is limited to 1% per frame.
Thus, the initial decrease in the predicted size isn’t as extreme, as this forces the
model to update its representation of the blurry body of the bird. For the CWS
execution strategy, the scale change is not limited, and the predicted size of the
object decreases drastically, within a few frames. Careful inspection of the ground
truth annotation reveals that the bounding box contains a lot of background, which
should ideally be more precise and contain only the body of the bird. We can at-
tribute the initial drop in size to the annotation of the bounding box, which is too
large and secondly, on the blurry edges of the bird. This causes the Candidates
algorithm to decrease the size of the predicted bounding box to the part of the
bird’s body, where it is can be certain that the pixels belong to the bird, which is
not given for the blurry edges.

After the initial, strong decrease of the predicted size, the predicted size does
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Figure 3.7: The TB100 sequence Bird1, on which the Candidates (dynamic bound-
ing box, CWS execution strategy) algorihm performs drastically worse than the
baseline.

not change much, until the bird plunges into a cloud and is fully occluded. Here,
the lower limit of the CWS confidence prevents updating the size, since the HIOB’s
confidence values on the convolutional feature map are too low. This produces the
straight line between frame 100 and 200 in the size plots in Figure 3.6.

In the last third of the sequence, a second bird partly occludes the target bird,
which causes HIOB to lose the target bird, which was only possible because HIOBs
internal representation had already been decreased significantly.

The takeaway from this sequence analysis is that while scale estimation based
on convolutional features works well for most cases, in specific scenarios it can fail
and drastically affects the results of the overall object tracking.

3.3.2 NICOVISION sequences

For the NICOVISION dataset, the most interesting aspect is why the Candidates
algorithm, which achieved strong results on the TB100 dataset, performs worse
than the baseline of not running a scale estimation algorithm at all. For this,
inspect the size graphs in Figure 3.8. For both of these plots, we can observe
that the predicted size decreases, shortly before the ground truth size of the ob-
ject increases. This initial shrinking is caused by the occlusion of the object by
the robot’s hands and makes scale estimation with convolutional features on the
NICOVISION dataset particularly challenging. Using the confidence-window strat-
egy (CWS) doesn’t help either, in fact, with the confidence window strategy, we
get significantly worse results than with the continuous (max) execution strategy.
Heinrich et al. report that the confidence windows strategy produced better re-
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Figure 3.8: Typical size plots for the candidates algorithm using the continuous
execution strategy.

(a) Frame 24 (b) Frame 260 (c) Frame 277

(d) Frame 343

Figure 3.9: Example of occlusion and motion blur which produces reducing prob-
ability valutoo challenging for the edge representation. es on the feature map,
causing the Candidates algorithm to decrease the predicted sizte.

sults (in their work referred to as "High Gain Combined” (HGC)), specifically
when dealing with occlusion [2]. However, for the problem of scale estimation, this
does not appear to be the case. At least, the CWS update strategy doesn’t solve
the problem of occlusion of the object by the the robot’s hands.

The CWS execution enforces an update of the scale every 20 frames, in the same
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way as the HGC update strategy in Springstiibes work [4]. For the NICOVISION
dataset, this in itself could be critical, because the 20’th frame might just be
one, where the object is occluded by the robot’s hands. An additional feature
distinguishes the CWS strategy from the MAX strategy. For the MAX update
strategy, we only allow the object to increase or decrease its size by one percent
on each frame, which produces a more stable scale over time. However, for the
CWS update strategy, the scale change is not limited, because it is possible that
confidence didn’t fall within the windows and as such, we didn’t update the scale
over up to 20 frames. Thus, to allow the algorithm to compensate for the potential
strong scale change that could have occurred, the scale change under the CWS
execution strategy is not limited.

On the NICOVISION dataset, this becomes problematic, because the occlusion
of the object tends to exceed way over 20 frames, often persisting over the entire
interaction of the robot with the object. In such a case, since the object is occluded,
there are fewer values on the feature map that have a high likelihood of belonging
to the object. As a natural consequence, the scale estimation algorithm will pick
up on this, and start to decrease the scale. Since the CWS update strategy is not
limited in the scale changes, this decreases the scale much faster, compared to the
continuous update strategy, where the scale can only change by 1% per frame.

necessary
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occurrence

0.0+ : ; : :

0 10 20 30 40 50
center distance [pixels]
------ 0.703 Candidates stat. max 0.704 DSST stat. max
------- 0.688 Candidates stat. CWS 0.695 DSST stat. CWS
------ 0.73 Candidates dyn. max ---0.733 DSST dyn. max
------ 0.71 Candidates dyn. CWS ---0.669 DSST dyn. CWS

—— 0.67 No SE (HGC)

Figure 4.1: Precision scores of the of both algorithms and the baseline on thr TB100

dataset, as reported in the original thesis. The best version of each algorithm is
highlighted in bold.

occurrence

0.0 : - - —
0.0 0.2 0.4 0.6 0.8 1.0
overlap score
------ 0.442 Candidates stat. max 0.483 DSST stat. max
------- 0.463 Candidates stat. CWS 0.476 DSST stat. CWS
------ 0.473 Candidates dyn. max ---0.497 DSST dyn. max
------ 0.481 Candidates dyn. CWS  ---' 0.467 DSST dyn. CWS

—— 0.466 No SE (HGC)

Figure 4.2: Success scores of the of both algorithms and the baseline on thr TB100

dataset, as reported in the original thesis. The best version of each algorithm is
highlighted in bold.
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