
Scale Estimation in Visual Object
Tracking

Bachelorthesis
at Research Group Knowledge Technology, WTM

Prof. Dr. Stefan Wermter

Department of Informatics
MIN-Faculty

Universität Hamburg

submitted by
Finn Rietz

Course of study: Human-Computer Interaction
Matrikelnr.: 6799896

on
9.4.2019

Examiners: Dr. Stefan Heinrich

Dr. Matthias Kerzel

mailto:5rietz@informatik.uni-hamburg.de
mailto:heinrich@informatik.uni-hamburg.de
mailto:kerzel@informatik.uni-hamburg.de




Abstract

Robust visual object tracking is a key requirement in the field of robotics, as it
enables advanced robot environment interaction. In the past, Convolutional Neu-
ral Networks (CNNs) have been shown to be powerful feature extractors and are
viable for visual object tracking, based on the extracted features. While most
state-of-the-art trackers achieve strong results in controlled settings, significant
scale variations of the target object during tracking poses a challenging problem,
because it requires online learning of new visual features, corresponding to the
object at a different scale. As a consequence, scale variation requires specific and
sophisticated care.

This thesis provides thorough analysis of the available algorithms for handling
scale variations, from which two algorithms have been carefully selected and imple-
mented in the HIOB tracking framework. Both algorithms are extended to support
independent scaling across the x and y-axis, additionally, update strategies are de-
veloped that control on which frames the algorithms are executed. The TB100
dataset is used for evaluation on a broad and diverse range of sequence. Addition-
ally, evaluation on the NICO dataset reveals performance of the two algorithms
when facing typical robot environment interaction challenges. The results show
strong scale estimation capabilities of one algorithm, while the second algorithm
that has been developed shows promising potential.

III



Abstract

Zusammenfassung

Das Verfolgen von Objekten über mehrere Bilder hinweg ist eine grundlegende
Voraussetzung in der Robotik, da es fortgeschrittene Roboter-Umwelt Interaktion
ermöglicht. In der Vergangenheit wurde gezeigt, dass Convolutional Neural Net-
works in der Lage sind visuelle Merkmale zu extrahieren, basierend auf welchen,
Objekte verfolgt werden können. Während viele Tracker in kontrollierten Umge-
bungen gute Ergebnisse erzielen, stellen signifikante Änderungen der Größe des
verfolgten Objekts ein anspruchsvolles Problem dar, da online neue Merkmale ge-
lernt werden müssen, welche das Objekt in veränderter Größe beschreiben. Daher
wird eine Lösung für das spezifische Problem der sich verändernden Größe benötigt.

Diese Bachelorarbeit stellt eine sorgfältige Untersuchung der vorhanden Al-
gorithmen, welche die Problematik der sich verändernden Größe thematisieren,
zur Verfügung. Basierend auf dieser, wurden zwei Algorithmen ausgewählt und in
dem HIOB Tracking System implementiert. Beide Algorithmen wurde erweitert,
wodurch unabhängige Skalierung auf der x und y-Achse möglich ist. Außerdem
wurde Aktualisierungs-Stratgien entwickelt, welche steuern, auf welchen Bildern
die Algorithmen ausgeführt werden. Der TB100 Datensatz wird benutzt um die
Ergebnisse der Algorithmen auf einer diversen Sammlung von Sequenzen zu unter-
suchen, wohingegen die Ergebnisse auf dem NICO Datensatz zeigen, wie sich die
unterschiedlichen Algorithmen verhalten, wenn sie den typischen Schwierigkeiten
der Roboter-Umwelt Interaktion ausgesetzt sind. Die erzielten Ergebnisse deuten
gute Ergebnisse in der Abschätzung der Größe von einem der beiden Algorithmen
an, wohingegen der zweite Algorithmus, welcher entwickelt wurde, vielversprechen-
des Potential zeigt.

IV



Contents

1 Introduction 1
1.1 Research objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . 2

2 Basics 5
2.1 Defining the tracking task . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Introducing the bounding box . . . . . . . . . . . . . . . . . 6
2.2 Correlation and convolution . . . . . . . . . . . . . . . . . . . . . . 7
2.3 The frequency domain an its properties . . . . . . . . . . . . . . . . 9
2.4 Basic correlation filtering . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Advanced correlation filters . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 ASEF correlation filters . . . . . . . . . . . . . . . . . . . . 10
2.5.2 MOSSE correlation filters . . . . . . . . . . . . . . . . . . . 12

2.6 Convolutional neural networks . . . . . . . . . . . . . . . . . . . . . 14
2.6.1 Tracking with CNNs . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Histogram of oriented gradients . . . . . . . . . . . . . . . . . . . . 16
2.8 A word on in-plane rotation . . . . . . . . . . . . . . . . . . . . . . 18

3 Related work 21
3.1 The fully convolutional hierarchical object tracker HIOB . . . . . . 21
3.2 On computational load and real-time performance . . . . . . . . . . 24
3.3 Possible algorithms for scale estimation . . . . . . . . . . . . . . . . 25

3.3.1 Using depth-sensors . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Patch-based . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.3 Sample-based . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Approach 29
4.1 Dealing with the computational load . . . . . . . . . . . . . . . . . 29
4.2 The scaled candidates approach . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Generating additional candidates . . . . . . . . . . . . . . . 30
4.2.2 Rating an individual candidate . . . . . . . . . . . . . . . . 31
4.2.3 Candidate selection . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.4 Candidates: Static aspect ratio . . . . . . . . . . . . . . . . 33
4.2.5 Candidates: Dynamic aspect ratio . . . . . . . . . . . . . . . 34

4.3 The DSST algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 35

V



Contents

4.3.1 DSST: Dynamic aspect ratio . . . . . . . . . . . . . . . . . . 39
4.4 Update Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.1 The max update strategy . . . . . . . . . . . . . . . . . . . 40
4.4.2 The confidence window strategy . . . . . . . . . . . . . . . . 40

4.5 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.6 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.6.1 The precision plot . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6.2 The success plot . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6.3 The size error . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Evaluation and analysis 47
5.1 Parameter optimization . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.1 DSST optimization: Parameter settings . . . . . . . . . . . . 48
5.1.2 DSST optimization: Results . . . . . . . . . . . . . . . . . . 49
5.1.3 Scaled candidates: Parameter settings . . . . . . . . . . . . 51
5.1.4 Scaled candidates optimization: Results . . . . . . . . . . . 54

5.2 Validation of the DSST algorithm . . . . . . . . . . . . . . . . . . . 55
5.3 Performance on the TB100 dataset . . . . . . . . . . . . . . . . . . 62
5.4 Performance on the NICO dataset . . . . . . . . . . . . . . . . . . . 66
5.5 Realistic constraints and the computational load . . . . . . . . . . . 68
5.6 In depth sequence analysis . . . . . . . . . . . . . . . . . . . . . . . 70

5.6.1 Performance on TB100 sequences . . . . . . . . . . . . . . . 71
5.6.2 Performance on NICO sequences . . . . . . . . . . . . . . . 77

6 Conclusions 83
6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . 83

6.1.1 Scale estimation algorithms . . . . . . . . . . . . . . . . . . 83
6.1.2 The size error metric . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Bibliography 87

VI



Chapter 1

Introduction

Visual Object Tracking is a popular yet challenging topic in the field of Computer
Vision and is a fundamental requirement for advanced Computer Vision Tasks [35].
Being able to successfully track objects based on visual data only, enables tackling
of higher level goals related to computer vision. Autonomous agents or vehicles
need to be able to keep track of pedestrians, other agents or objects in general [23].
Other tasks like the automatic evaluation of security footage [27] or general robotics
and human-robot interaction require successful visual tracking performance. For
research groups related to the fields of robotics and computer vision it is, thus,
highly desirable to be able to achieve robust tracking performance, because being
able to accurately track objects in a real-world environment is a key requirement
for any autonomous agent.

Most up to date visual object trackers report precise and accurate results on
ideal tracking sequences [28], however difficulties arise with varying conditions like
In-Plane Rotation (IPR) of the object, Illumination Variations in the scene (IV)
or Occlusion (OCC) of the object during tracking, which are not trivial challenges
to overcome for a visual tracking algorithm. What most of these conditions have in
common is that they can cause the target object to greatly change its appearance
between two frames due to the occurrence of one of the described conditions. While
most of those factors do not pose any problem for human vision, they pose great
challenges for various image processing algorithms (including CNNs) and require
careful and sophisticated handling.

Another challenging and naturally occurring condition is Scale Variation (SV)
of the object. SV tends to occur when the viewpoint of the tracker is not static,
for example when an agent is moving through 3D space, but it can also be caused
by static agents that are located in a dynamic environment. In order to maintain a
precise model representation of the object, the tracker needs to adapt to the scale
change and learn the representation of the object at a new scale. The process of
detecting and handling the scale change is referred to as Scale Estimation (SE),
which poses the main focus of this bachelor thesis.

1



Chapter 1. Introduction

1.1 Research objective

As with most of the conditions mentioned earlier, SV requires a specific solution
in order to ensure robust tracking results. Thus, it is required to find an algorithm
specifically tailored to handle the task of estimating the scale of an object during
tracking. The HIerarchical OBject tracker HIOB has been developed by Peer
Springstübe and originally has no solution for SE and maintains a static bounding
box, based on the initial size of the object [30]. The HIOB tracker finds active use
in combination with the Neuro-Inspired COmpanion NICO by Kerzel et al. and
serves as a research framework for developmental robotics, which highlights the
relevance of the framework [19, 17]. The HIOB tracker poses the foundation for
this thesis and will be expanded upon. Thus, the first objective of this bachelor
thesis is to analyze the existing algorithms for SE and find a viable approach under
considerations of the requirements and constraints that arise in the developmental
robotics use case. The research question is formulated as follows:

What is a fitting approach for the problem of estimating the changing
scale of the target object during tracking, under consideration of the

developmental robotics constraints?

To find an answer for this question, an analysis of the available algorithms is
conducted to find generally valid and stat-of-the-art algorithms, which deal with
the target object changing its size during tracking. The following questions will be
discussed in greater detail throughout this thesis because they are closely related
to the main research questions:

• What are the main challenges in scale estimation?

• What approaches are adequate for the HIOB framework in combination the
NICO robot as a development robotics research platform?

The positive and negative consequences of the implementation of a module that
specifically handles SV during tracking will be analyzed and evaluated.

1.2 Organization of this thesis

The remainder of this thesis is structured as follows: In chapter 2, a basic overview
of the underling technologies and principles is provided. This includes the introduc-
tion to Convolutional Neural Networks (CNNs) and more specifically CNN based
object tracking, as HIOB makes heavy use of the CNN technology [30]. Addition-
ally, an introduction to correlation filtering will be given, as one of the selected and
implemented algorithms is based on correlation filtering. General related work, the
HIOB framework, and existing algorithms for scale estimation are introduced and
discussed in chapter 3. How the problem of SE has been dealt with, what datasets
are used in this thesis, and how the different approaches have been implemented

2



1.2. Organization of this thesis

is described in chapter 4. Chapter 5 presents the final results and findings of this
thesis, evaluates the different implemented approaches, and provides an in depth
analysis of the behavior of the different algorithm on exemplary, representative
sequences. Finally, chapter 6 provides a discussion of the results and findings, un-
der consideration of the main research question, and provides possible future work
topics.

3



Chapter 1. Introduction

4



Chapter 2

Basics

This chapter provides introductions into the theoretical concepts that will be
needed to develop a solid understanding of the different approaches that will be
introduced later. Specifically, the concepts and principles that are used in the al-
gorithms that have been implemented will be explained here.

2.1 Defining the tracking task

Before we explore the theoretical concepts that are of critical importance for the
algorithms discussed in chapter 3, it makes sense to formally define what is to
be understood as the overall goal of tracking. This is necessary because tracking
can occur in different contexts. It needs to be discriminated between tracking in
an actual autonomous agent and tracking on prerecorded image sequence. This
differentiation is necessary, because an agent autonomously navigating through
3D-space needs to be able to detect each object in order to track it, while this step
of detection can be ignored for tracking on a prerecorded image sequence.

In general accordance with this, a first categorization of tracking algorithms is
provided by Kalal et al. [18], where a distinction is made between tracking and
detection approaches:

• Detection approaches: Detection approaches are applied for every frame and
estimate the position of the target object without considering the previous
position. While detection approaches do not drift off the target because they
do not accumulate errors (e.g. in the representation model) over time, they
require offline training and can thus not be applied to unknown objects.

• Tracking approaches: The definition of a tracking approach is that it only
requires initialization once and from the point of initialization on, a track-
ing algorithm tries to estimate the objects motion. This makes tracking ap-
proaches fast, as tracking eliminates the need for repeated detection and is
also less costly than running a detector on every frame but also makes them
prone to accumulate errors over time, as the object can change its appear-
ance drastically [30, 3]. Trackers also tend to fail when the object completely

5



Chapter 2. Basics

leaves the viewport and reappears, possible rotated on multiple axis and thus
possibly having a vastly changed appearance.

Kalal et al. offer definitions for both tracking and detection tasks [18]. Track-
ing is defined as ”the task of estimating the objects movement” and detection
is defined as ”the task of localizing object’s in an input image”. While this is a
solid foundation of a definition for the tracking task, the definitions are vaguely
formulated and a more extensive definition is provided in the following section.

Kalal et al. further differentiate between static and adaptive tracking approaches.
In static approaches, the template/model representation of the target object is not
changed during tracking, assuming that the appearance of the object won’t change
during tracking. In adaptive approaches, the template/model adapts to changes in
appearance of the object. Adapting to the changes of appearance of the target is
so fundamental for robust tracking, that non-adaptive trackers can be considered
outdated and won’t be of interest for state-of-the-art performance.

Finally, Kalal et al. differentiate between generative and discriminative tracking
approaches. Generative approaches consider only the appearance of the actual
target and can be considered as target matching tasks because the candidate that
is most similar in the target representation model is decided as the new target
[1]. As a consequence, generative trackers are challenged by cluttered background
scenes [18].

Building upon this, discriminative tracking approaches use the background to
obtain negative examples. Tracking is then considered as a binary classification
task, which represents the decision boundary between the object and the back-
ground. The negative background samples in combination with positive samples
from the actual target are used to train the target classifier [1].

2.1.1 Introducing the bounding box

As the position of the target object on a prerecorded image sequence is known,
it is common practice in the visual object tracking community to simply provide
the tracker with the initial position of the object. Like this, the tracker can be
initialized with the knowledge about the location of the object, instead of having
to deploy some kind of object detection algorithm. This can be done by simply
passing the exact coordinates of the object (consisting of values for x, y, width and
height) on the first frame to the tracking algorithm, which is also how it is done
in the HIOB framework.

The coordinates enclosing the target object that is to be tracked are commonly
referred to as the bounding box. The bounding box is simply a rectangle containing
the object as tightly as possible and is used to derive the vast majority of met-
rics used to evaluate the performance of a tracking algorithm. The performance
measuring metrics will be introduced in section 4.6.

Equipped with this knowledge, a formal definition of the tracking task can be
derived:

6



2.2. Correlation and convolution

The tracking task refers to the process of maintaining a bounding box
in such a way, that the center distance between the predicted

bounding box and the actual bonding box is minimized, while the
intersection between the predicted bounding box and the ground truth

bounding box is maximized.

In other words, the goal is to update the bounding box in such a way, that the
predicted position is as close to the actual position, while the width and height of
the bounding box are updated, depending on the width and height of the object’s
representation in the image sequence.

2.2 Correlation and convolution

The mathematical operation Convolution is the fundamental principle used in the
HIOB framework to track an object over a sequence of images. The mathematical
operation Correlation is the key component in the algorithm provided by Danelljan
et al., which has been implemented and is evaluated as part of this thesis [8, 9].
Thus, a solid understanding of the two operations is necessary.

The two mathematical operations Correlation and Convolution are, broadly
speaking, used to apply one function onto some other function, like applying a
smaller image in each location of a bigger image. This can be done in both the
spatial or frequency domain. For now, the focus lies on spatial correlation and
convolution. The spatial domain in this context means that we apply correlation
or convolution directly on the pixels values of an image, instead of working with
the frequency representation of an image.

The two operations are almost identical, except for one property which causes
the operations to have different outputs. What both operations share, is that they
both apply a sum-of-products operation between an image f and a kernel w (gener-
ally speaking between two functions, but we are only working with images). In the
same way, a grayscale image can be represented by a 2D-matrix of values between
0 and 1, a kernel is also just a matrix of values. The size of the kernel defines how
much of the image is taken as input at each location, and the coefficients of the
kernel determine what the result of the convolution will be [14].

Having a kernel of a specified size already makes an interesting assumption
about the input. Applying some kernel at each location of an image versus trying
to process the entire input image at once means, that we assume that we can still
extract information, even when we don’t consider the entirety of the image. For
example, we assume that things that are closer to each other are more likely to
share some kind of relation compared to things that are further away from each
other. This is true for images, where the likelihood of two pixels belonging to the
same object is higher when the pixels are closer together [21] compared to when
they are further apart. As another example, data-points extracted from a sound
wave are more likely to belong to the same word, if they have been extracted closer
to each other than further apart from each other.

7



Chapter 2. Basics

Those kernels are often also referred to as masks, templates or windows. Now,
applying correlation at a specific location (x, y) on an image f , the output g(x, y)
at that location is the sum of products of the kernel coefficients and the image
pixels within the kernel [14]:

g(x, y) = w(−1,−1)f(x− y, 1− y) + w(1−, 0)f(x− 1, y − 0)+

. . .+ w(0, 0)f(x, y) + . . .+ w(1, 1)f(x+ 1, y + 1)
(2.1)

While Equation 2.1 applies a correlation kernel of static size on a static location,
Equation 2.2 provides the formula for applying a kernel w of size m × n, where
m = 2a + 1 and n = 2b + 1 at each location (x, y) of an image f , by varying x
and y in such a way, that the center of the kernel visits each pixel once, shifting
the kernel over the image and producing the operation result. To ensure that the
center of the kernel can actually visit each pixel of an image, the image is usually
padded by either 1’s or 0’s. The ? denotes the correlation operation:

(w ? f)(x, y) =
a∑

s=−a

b∑
t=−b

w(s, t)f(x+ s, y + t) (2.2)

Everything described so far applies to both the Correlation and Convolution
operation. The one sole difference between the correlation and convolution oper-
ation is, that for convolution, the kernel is rotated by 180◦ [14]. This is because
correlating a kernel w with a discrete unit impulse1 outputs a copy of w, rotate by
180◦. This effect occurs, because the last (rightmost, bottom) value of the kernel
visits each pixel first, when correlated on the input image f , starting at the top
left location.

To counter this effect, the convolution operation simply pre-rotates the kernel
by 180◦, so that convoluting a kernel with a discrete unit impulse outputs an exact
copy of the kernel [14]. Thus, the formula for convolution is very similar to the one
for correlation 2.2, with the ∗ denoting convolution:

(w ∗ f)(x, y) =
a∑

s=−a

b∑
t=−b

w(s, t)f(x− s, y − t) (2.3)

.

Here, the minus aligns the coordinates of f and w when one function is rotated
by 180◦ [14].

To summarize why it is important to differentiate between Correlation and
Convolution: When correlating is used to process a function with a kernel, the
output is reversed, while when convolution is used to process a function with a
kernel, the output is not reversed (because the kernel has been pre-rotated).

1A function (e.g. an image) that contains only one 1 and the rest being zeros, like a black and
white image that is just black with 1 white pixel

8



2.3. The frequency domain an its properties

2.3 The frequency domain an its properties

In the previous section Correlation and Convolution have been applied in the
spatial domain. This section provides an introduction into the frequency domain
and shines light on why it is beneficial to instead convolve or correlate two functions
in the frequency domain.

It is possible to express a periodic function as the sum of weighted sines and
cosines of different frequencies (with the limitation to periodic functions, this is
referred to as the Fourier series). A non-periodic function can be expressed as
the integral of sines/cosines multiplied by a weighting function[14]. The later case
is known as the Fourier transform and is what is of interest for this thesis, as
images are not necessarily periodic. The appearance of an image in the frequency
domain thus depends on the frequency of its sinusoidal components, where image
regions with low variance in the intensity values (e.g. an equally illuminated wall)
correspond to sinusoids of low frequency and image regions with high variance in
the intensity values (e.g. sharp edges) are represented by sinusoids of high frequency
[14].

It is possible to take a function(e.g. an image), convert it into the frequency
domain using the Fourier transform, process it while it is in the frequency domain,
and then convert it back into the spatial domain by applying the inverse Fourier
transform [14]. What makes this interesting is, that the frequency domain (also
referred to as Fourier domain) satisfies special mathematical properties especially
useful in this context, stating that convolution in the spatial domain is equivalent
to multiplication in the frequency domain [14, 5]. This is useful, because applying
convolution or correlation in the spatial domain with a M ×N image and a m×n
kernel requires MNmn operations, while it only requires 2MNlog2MN operations
to perform and process it in the frequency domain (2 because the functions need
to be converted into the frequency domain and back into the spatial domain)
[14]. Thus, calculating convolution or correlation in the frequency domain is much
cheaper than calculating either operation in the spatial domain.

2.4 Basic correlation filtering

The basic mathematical operations Correlation and Convolution have been ex-
plained in section 2.2. Evaluating Equation 2.2 at each location of the image f ,
the output (or correlation score) is highest where the image f and the kernel w
are similar. That is, because when two high values on the kernel w and the image
f align, their product is bigger than when a high value on the kernel aligns with
a low value on the image, and vice versa. Therefore, Equation 2.2 finds locations
where the values on w match regions on f .

Equation 2.2 has the drawback of being vulnerable to changes in amplitude in
either one of the functions w or f . As a result, the correlation coefficient is used
to perform correlation filtering/template matching, normalizing both functions to
amplitude changes [14]:

9



Chapter 2. Basics

γ(x, y) =

∑
s

∑
t[w(s, t− w̄)][f(x+ s, y + t)− f̄xy]{∑

s

∑
t[w(s, t− w̄)]2

∑
s

∑
t[f(x+ s, y + t)− f̄xy]2

} 1
2

(2.4)

Here, w̄ is the average value of the kernel w, and f̄xy is the average value of
f in the region contained by the kernel w at the current displacement step. The
correlation operation described in section 2.2 is used to shift the kernel w over the
image f , so that the kernel visits each location in f. The highest possible value
obtainable by eq. 2.4 occurs when the normalized w is identical to the normalized
region in f .

This process is referred to as correlation filtering or template matching, as the
kernel can be thought of as a template or sub-image that we try to find in a bigger
image. In fact, in this basic case of correlation filtering, that is exactly what is
being done.

2.5 Advanced correlation filters

This section introduces two more advanced types of correlation filters, which pro-
vide the foundation for the correlation filter that is used in the approach by Danell-
jan et al., which has been implemented as part of this thesis [8, 9].

2.5.1 ASEF correlation filters

A common way to detect patterns (i.e. locate objects) in images is to correlate an
image with an exemplary template of the pattern or object, which is to be located
somewhere in the input image [12]. This corresponds to the most basic implemen-
tation of correlation filtering. This kind of filtering has many known weaknesses,
the most commonly recognized weakness describes the problem of the template
only having a high to a near perfect match when the template can be found almost
exactly as is in the input image. As soon as the template is only slightly varied
on the input image, the response of such a filter becomes unpredictable [4]. There
is an entire family of correlation filters that have been developed to try to over-
come this weakness that differs mainly in how they construct the filter from the
training samples [4]. One of those filters is the Synthetic Discriminate Functions
(SDF), which respond well to positive images of the target object while suppressing
responses to negative training examples [4].

To overcome this and other weaknesses Bolme et al. introduced a new type
of correlation filter, called Average of Synthetic Exact Filters (ASEF), that differ
from traditional filters in multiple ways: First, where previous filters like SDF only
output a single correlation value, ASEF filters are trained using response images,
which have a bright peak centered on the target object [4]. As a consequence of
completely specifying the correlation output, a complete, exact filter is learned for
each training image, which is finally averaged to create the average filter over the
entire training set [4].

10



2.5. Advanced correlation filters

Figure 2.1: Training of an ASEF Filter compared to the training of a SDF Filter.
Figure taken from [4].

Figure 2.1 shows the comparison of an ASEF and a SDF filter and will be
used to explain the process. A training pair consists of a training image fi and
the desired output gi. The desired correlation output is synthetically constructed
(hence Average of Synthetic Exact Filters) and takes the form of a bright peak
at the center of the target, here being the left eye. More formally, gi is defined to
be a 2-dimensional Gaussian distribution, centered at the location of the target
xi, yi with a radius of σ, where the purpose of σ is to find a tradeoff between noise
tolerance and peak sharpness:

gi(x, y) = e−
(x−xi)

2+(y−yi)
2

σ2 (2.5)

A correlation filter hi is then computed in the Fourier domain which exactly
transforms fi to gi. The final correlation is then computed by taking the average
of every exact filter.

As stated in the Convolution Theorem and explained in section 2.2, correlation
or convolution in the spatial domain is equal to pointwise multiplication in the
frequency/Fourier domain [5]. Hence the following equation, where capital letters
in the Fourier domain correspond to their non-capital counterpart from the spatial
domain holds true, where F−1 denotes the inverse Fourier transform and ? the
correlation operation:

11



Chapter 2. Basics

g(x, y) = (f ? h)(x, y) = F−1(F (w , v)H(w , v)) (2.6)

Equation 2.6 provides the basis for finding an exact filter. In order to solve
for the exact filter, first the correlation is computed by including the complex
conjugate of H into the equation 2.6:

G(w , v) = F (w , v)H∗(w , v) (2.7)

Then, the equation can be solved for the exact Filter,

H∗i (w , v) =
Gi(w , v)

Fi(w , v)
(2.8)

meaning that we essentially obtain the exact filter from an element-wise di-
vision between the transformed target output Gi and the transformed training
image Fi. The final average, exact filter can finally be computed. Because the
Fourier Transform is a linear operation, it can be computed in either the spatial
or frequency/Fourier Domain, given by the following two equations, where H∗µ and
hµ are the final ASEF filters:

H∗µ(w , v) =
1

N

N∑
i

=1 H∗i (w , v) (2.9)

hµ(x, y) =
1

N

N∑
i

=1 hi(x, y) (2.10)

As it can be seen from figure 2.1, the individual, exact filters hi do not seem
resembles an eye. That is, because each individual filter hi, that has been produced
in the Fourier domain, corresponds to the specific image fi and exactly transforms
this to the output gi. To produce a filter that generalizes across the entire train-
ing set, and thus emphasizes the shared commonalities across the training set, the
average of the individual, exact filters needs to be taken, which then takes the
shape of an eye. Only the individual filters are essentially weak classifiers that
perform perfectly on the corresponding training image but have the same prob-
lem mentioned above of being unpredictable for slight variations of the training
template.

2.5.2 MOSSE correlation filters

The Minimum Output Sum of Squared Error (MOSSE) filter are a newer kind of
correlation filter that has been introduced by Bolme et al. [3]. The MOSSE filter is
closely related to the ASEF filter described previously. The main drawback of the
ASEF approach is, that it requires a large number of training images, which are
per definition not available for online tracking tasks, where the tracker is initialized
on the first frame of a given video sequence. Therefore the MOSSE filter produces
stable and adaptive, ASEF-like filters but instead of requiring a large number of

12



2.5. Advanced correlation filters

training images, MOSSE filters can be initialized and trained on a single image [3].
Adaptive in this context means that the filter can be trained online and can adapt
to changes in the appearance of an object, which is a key requirement for model
representations in visual object tracking.

For training, MOSSE filters require a set of input images f and corresponding
training outputs g. Note, that the set can contain only 1 image. A filter hi that
transforms the training image to the output is given by equation 2.11, where the
capital letters refer to the non-capital counterparts but in the Fourier domain and
the ∗ denotes the conjugate of a complex number:

H∗i =
Gi

Fi
(2.11)

In compliance with most correlation filters, gi is chosen to be a 2D-Gaussian
centered on the target object and the filter is trained in the frequency domain
because of cheaper calculation, as described in section 2.3.

In order to find the optimal filter for a set of training images, MOSSE finds a
filter H that minimizes the sum of squared errors between the actual output of the
convolution and the desired output of the convolution, which is specified by Gi.
The minimization problem that finds the ideal filter is then given by Equation 2.12,
where � denotes element-wise multiplication:

min
H∗

∑
i

|Fi �H∗ −Gi|2 (2.12)

Without providing the complete derivation (which is provided by Bolme et al.),
a closed form expression2 for the MOSSE filter is:

H∗ =

∑
iGi � F ∗i∑
i Fi � F ∗i

(2.13)

Here, the numerator is the correlation between the input and the output, and the
denominator is the sum of energy spectra over each image in the training set (this
information will be relevant in a second).

Of special interest is the case where only one image is used for training the filter
and where small amounts of images are used in the training set. If the training set
consists of only one image and the corresponding correlation output, an exact filter
is learned, which precisely transforms the one input image to the one correlation
output, which can be observed in the following equation:

H∗i =
Gi

Fi
=
Gi � F ∗i
Fi � F ∗i

=

∑
iGi � F ∗i∑
i Fi � F ∗i

(2.14)

The problem with exact filters is, that they often fail or behave unpredictably
when applied to a new image [3]. In the ASEF approach, this problem has been
solved by averaging over the filters from the training set. Just like the ASEF filter,
the MOSSE filter produces an exact filter but requires only one training sample

2A close form expression is an expression that can be solved with a finite number of operations

13



Chapter 2. Basics

in the training set. This becomes clear when a rewritten version of equation 2.9 is
considered:

H∗ =
1

N

∑
i

Gi � F ∗i
Fi � F ∗i

(2.15)

The comparison of equation 2.15 and equation 2.13 shows that in the ASEF
case in Equation 2.15, the denominator is much more likely to be close to zero as
in the MOSSE case because ASEF utilizes only the energy spectrum of each input
image. This is problematic, because when the denominator is close to zero, the
filter becomes unstable and the output unpredictable [3]. The ASEF approach tries
to counter this problem by averaging over the entire training set, while MOSSE
always uses the sum of energy spectra across the entire training set, which is much
less likely to produce a small number. Like this, the MOSSE approach is able to
produce stable filters even on small training sets.

There is still the problem of MOSSE filters producing an exact filter (which
is not desired) when the training set consists of only one image and correlation
output. To obtain a bigger training set, n affine transformations3 are applied on the
target object in the initial image, and the desired correlation outputs are generated
accordingly [3]. Setting n = 8 is enough to produce a stable MOSSE filter, which
is not enough for an ASEF filter [3].

Finally, to make the MOSSE filter adaptive, running average in combination
with a learning rate η is applied [3] so that the frame i is given by:

H∗i =
Ai
Bi

(2.16)

Ai = ηGi � F ∗i + (1− η)Ai−1 (2.17)

Ai = ηFi � F ∗i + (1− η)Bi−1 (2.18)

To summarize, MOSSE filters can be trained on a single training image (plus the
desired correlation output), by generating a small number of training samples using
affine transformations on the initial image. MOSSE filters are valid for tracking
scenarios, as they can adapt to changes in the appearance of the target object by
applying running average and a learning rate on each frame, putting more weight
on the recent frames and decaying older frames exponentially over time [3].

2.6 Convolutional neural networks

Convolutional Neural Networks (CNNs) are not a new technology. In fact, they
have already been used as early as 1990 [15]. In 1990, LeCun et al. at the AT&T
research group developed a Convolutional Neural Network for reading handwritten
digits, which was by the end of the 1990s reading 10% percent of all checks in the
United States [15, 24]. CNNs became extremely popular after 2012 after Krizhevsky
et al. [22] won the ImageNet Visual Recognition Challenge.

3Examples for affine transformations are: Translation, scaling or rotation

14



2.6. Convolutional neural networks

CNNs exploit the the assumption that values with high proximity have high
correlation (more detailed in section 2.2) and don’t process the entire input data
(e.g. an image) at once, but rather process the input data in small batches, resulting
from shifting the kernel over the input, as described in greater detail in section 2.2.
By processing the input data in small batches, the CNN can detect small but
meaningful visual features like edges [15]. Like this, a CNN does not try to learn one
specific representation for an object, instead, it learns which collection of detected
features correspond to an object.

CNNs make use of the convolution operation in order to process an input image.
This gives them major advantages over fully connected architectures. One of those
advantages is that the net has to learn fewer weights. This is because at each
location only the direct neighborhood needs to be considered (the neighborhood
size is determined by the size of the kernel), instead of the entire input data. This
property is referred to as sparse connectivity [15]. A similar positive property found
in CNNs the fact that each parameter (value) in the kernel is used at every position
of the input. This is not the case in a traditional neural network, where each weight
in the weight matrix is used exactly once in the computation of the output of a
layer. This property is referred to as parameter sharing [15].

A convolutional layer (or a set of multiple convolutional layers) in a neural
network is usually followed by a pooling layer. The job of the pooling layer in
a CNN is to remove information that we are not interested in by adjusting the
output of the convolutional layers. There are multiple pooling functions, a popular
choice is the max pooling function which reports the maximum output within a
rectangular neighborhood [15]. In a typical CNN, multiple convolutional layers are
stacked after each other, followed by a pooling layer. This set of layers can be
repeated, and after enough sets of convolutional and pooling layers, the network
architecture is referred to as a deep convolutional neural network. Stacking multiple
convolutional and pooling layers allows the CNN to learn more and more complex
features, as one feature in the nth convolutional layer contains several features
from the nth -1 layer.

The output of the final convolution plus pooling set is usually fed into a fully
connected layer, for the final calculation of the output.

2.6.1 Tracking with CNNs

As it has been described in section 2.4 the output of the correlation operation (eq.
2.2) is high, when the kernel is similar to the current displacement region on the
image. As a result, it is possible to apply the correlation operation to output the
position of an object in an image. The same is true for the convolution operation.
Taking this idea further, it is also possible to take multiple images that together
make up a sequence, and apply convolution on each image and, thus, output a
position of an object throughout a sequence. This is the basic idea behind tracking
via with CNN’s.

In practice, a lot of challenges arise, which is why object tracking is still a
challenging problem in the field of computer vision. The most fundamental problem

15



Chapter 2. Basics

that needs to be considered when we wish to track on object throughout a sequence
of images, is that objects usually change their appearance through time, be it
caused by rotation, changes in illumination and shadows being cast on the object
or by a none-rigid transformation of a living thing. This is why a CNN-based
tracker usually deploys additional components, dealing with different challenges
arising in the tracking context. A tracker can be referred to as CNN-based when
a CNN is involved to extract visual features, that are then used to calculate the
position of the target object.

A general classification of different CNN-based tracking approaches divides
them into two categories [30]: Offline and online trained CNN trackers. Offline and
online in the context of neural network training generally refers to the point in time,
at which a network has been or is trained. A CNN that has been trained offline
(or pre-trained) means the net already learned the weights and biases necessary to
accomplish a specific task, like classifying what object is present in an image [22].
This means that the network already learned what visual features correspond to an
object, and only needs to see (extract) them again in order to know what object is
present. Another relevant offline/pre-trained CNN is the VGG16 by Simonyan and
Zisserman [29], which is also used in the fully convolutional network based tracker
FCNT by Wang et al. [32] which in turn is the basis for the HIOB tracker [30].

The counterpart to offline/pre-trained CNNs are online trained CNNs or net-
works in general. Online training means, that the CNN learns what features are
relevant for a task like tracking during the task itself. On the initial frame of a
tracking sequence, the network is provided with the location of an object and, thus,
knows that the visual features being extracted from that region correspond to the
target object. The following frames are also used for training in order to achieve a
more versatile and robust representation of the object. The main two drawbacks
of this training strategy are, that the training process is computationally costly,
and that as soon as the prediction of the position of the target object is slightly
off once, the CNN still assumes that the position is correct and also trains on the
features that don’t actually belong to the object, reinforcing the error [30]. This
can cause the prediction of the network to drift further and further off.

2.7 Histogram of oriented gradients

Histogram of oriented gradients is a feature descriptor, which became widely used
after 2005, when the descriptor has been used by Dalal and Triggs on the original
MIT pedestrian database, achieving near perfect results [6]. A feature descriptor or
visual features in the context of computer vision describes fundamental character-
istics of a video or image, like the shape of an object, while filtering out irrelevant
noise. HOG is commonly used to derive a feature descriptor for bounding boxes
[20]. The basic idea behind HOG is that the appearance of an object can be de-
scribed well by the

”
distribution of local intensity gradients or edge directions, even

without “[6]. This is implemented by dividing the image (or sub-image) for which
HOG features are to be calculated into small cells and calculating a 1-D histogram

16



2.7. Histogram of oriented gradients

(a) The input image showing NICO in-
teraction with the environment.

(b) The HOG feature representation of
the input image. The output is pro-
duced with a pixel cell size of 16× 16, 8
orientations and a block normalization
size of 1.

Figure 2.2: The input image frame 417 of the NICO lift blue tissue 01 sequence
and the resulting feature representation obtained from the HOG algorithm.

of gradient directions [6], which indicates the orientation of edges in each cell.
To compute HOG for a cell, we first calculate the horizontal and vertical

gradients, by filtering (see section 2.2) with the two kernels gx = [−1, 0, 1] and
gy = [−1, 0, 1]T . Those kernels are applied at each pixel in a cell, for each location
the orientation of the resulting gradient can be found by g =

√
g2x + g2y and the

magnitude (length) of the gradient can be found by m = arctan gy
gx

. The magnitude
of a gradient of a pixel location is high, when there is a strong change in inten-
sity, according to what has been described in section 2.2 regarding the output of
correlation and the similarity between the kernel and the and the section of the
image it sees. Thus, those gradients have high magnitude values on edges, and
low magnitude values on image regions without high changes in intensity, like on
an evenly illuminated wall. This step is referred to as the

”
Gradient Computation

step“ [6].
To obtain a histogram of oriented gradients for a cell, any reasonable number

of bins (n > 9 is reported to no longer improve performance significantly [6]) is
created, by evenly spacing the values between 0◦− 180◦ (

”
unsigned “) or 0◦− 360◦

(
”
signed “) on the number of bins. It is sufficient to use the unsigned version, as a

gradient and the gradients negative are represented by the same number, meaning
that a gradient and its 180◦ opposite are represented by the same number. For the
9 bin examples, the orientation values on the resulting bins in the histogram are
0, 20, 40, 60, ..., 180.

As the gradient magnitude and orientations have been calculated for each pixel
in a cell, each pixel contributes its magnitude score to the bin in the histogram
that closest corresponds to its orientation. Those scores are accumulated in the
histogram for each pixel in a cell. Like this, the final histogram of a cell has the

17



Chapter 2. Basics

(a) Frame 50. (b) Frame 66. (c) Frame 76. (d) Frame 85.

Figure 2.3: The TB100 Biker sequence as an example for the challenges of in-plane
rotation. Within 25 frames, complete rotation of the object occurred, requiring the
tracker to learn a new set of features.

highest values in the bins, whose orientation has the highest accumulated gradient
magnitudes. This step of assigning values to the bins in the histogram is referred
to as

”
Spatial binning “[6, 20]. The process of creating a histogram of oriented gra-

dients is repeated for each cell in the image, and the collection of those histograms
is referred to as the final feature descriptor.

In order to increase the robustness of the algorithm to illumination and shad-
owing, contrast-normalization can be applied on the cell histograms. This can be
achieved by normalizing the cell histograms in larger spatial groups, referred to as
blocks [6]. Normalization can be achieved by dividing each element in the block by
the L2 norm of the histogram block vector.

As a closing remark, HOG features refer to one histogram, while a histogram
can also be understood as just a vector of values. Thus, a cell feature corresponds
to the vector of values in the histogram, and the entire feature representation of the
image is the vector resulting from concatenating each cell histogram/vector into
on big vector. This is referred to as the final feature vector of the HOG descriptor.

The HOG representation of an image is visualized in Figure 2.2.

2.8 A word on in-plane rotation

Generally speaking, rotation can occur on each axis of an object in 3D space. Each
axis poses problems in a tracking context, as the visual features that have been
extracted from the image in the spatial domain suddenly no longer correspond to
the object, as the features are now differently aligned, or completely new features
represent the rotated object. Recalling how a CNN works, the networks learns
which visual features correspond to an object. It does not matter where the CNN
finds those features (this can be also be considered a weakness of CNNs), as long
as they are detected in the input the CNN will have high activation values for that
object. Thus, changing features poses an obvious problem for tracking contexts.

There are different approaches for different kinds of rotation, Goodfellow for
examples shows how pooling over the output of multiple parameterized convolu-
tional filters can make a CNN invariant to specific rotations, where each rotation
has its own filter [15]. A different solution to In-Plane Rotation (IPR) is provided
by Du et al., who propose a rotation adaptive correlation filter [11].

When an object rotates around its y-axis enough and it’s back is now facing the

18



2.8. A word on in-plane rotation

camera, within the few frames of the rotation occurring, a tracker has to adapt to
the rotation and learn the new features, which represent the backside of an object.
Such situations or when its infeasible to maintain different filters specifically for
rotated representations of an object are very challenging to deal with and pose
a separate, open research topic and are generally not in the scope of this thesis.
However, the problem of IPR is related to the central problem of this thesis, scale
estimation in visual object tracking. The problems are insofar similar as that strong
changes in the scale of an object also cause the learned, visual features to no longer
correspond to the object. That is, because a feature in a CNN context technically is
tied to a specific region of activations in the network, and this region is different for
a representation of the object at a different scale. Note, that the activation region
of a feature is independent of the position of the feature on the input image.

The central difference between the two problems is, that with SV, the object is
still expected to be present in the input (ignoring extreme cases where the object
grew bigger than the viewport or becomes so small that it is no longer detectable
at the image resolution), while with IPR, this is not necessarily the case, as the
argument can be made that a rotation can change the appearance of an object
so drastically, that it no longer looks like the same object. An example for such a
transformation is given in Figure 2.3.

19



Chapter 2. Basics

20



Chapter 3

Related work

In this section, the HIOB tracking framework will be briefly explained, as the
HIOB framework poses the underlying framework for this thesis [30]. Additionally,
available approaches to the problem of scale estimation will be introduced and
analyzed, in the light of being compatible with the HIOB tracking framework and
its usage with the Neuro-Inspired COmpanion (NICO) robot [19].

3.1 The fully convolutional hierarchical object

tracker HIOB

The Fully Convolutional Hierarchical Object Tracker HIOB is the tracking frame-
work which poses the foundation of this thesis. The framework has been developed
by Peer Springstübe in 2017 and is based on the Fully Convolutional Network
based Tracker (FCNT) by Wang et al. [30, 32]. The HIOB tracker consists of
multiple components, which handle the different subtasks in each tracking step.
This modularization enables easy replacement or reimplementation of the different
modules.

The HIOB framework makes use of a pre-trained CNN for feature extraction
and employs a second CNN that is trained online, to adapt the model represen-
tation to the changing appearance of the object. At initialization, the extracted
features are ranked, and the features that have the strongest relevance regarding
the specific target object are used to train the online CNN. The online CNN pro-
duces a prediction mask, based on which the most likely position of the object
is determined. For each following frame, the pre-trained CNN is used to extract
features, which are again fed into the online CNN, to update the prediction mask.
The new position is found, by generating a set of candidates (i.e. bounding boxes),
which are evaluated based on the prediction mask.

To gain a better understanding of the HIOB pipeline, the components and their
purposes are briefly explained:

• ROI calculator: This component extracts a region of interest around the
target object. This is done under the assumption, that the target object can

21



Chapter 3. Related work

only travel a limited distance between two frames. Thus, not the entire input
image needs to be processed.

• Feature extractor: The feature extractor produces a set of 2D masks based
on the region of interest, where one mask indicates the presence or absence
of a specific, visual feature.

• Feature selector: The feature selector ranks the extracted visual features
based on how likely they are to belong to the target object. The ranking is
obtained by another CNN, that is trained to produce the prediction mask
based on all visual features.

• Feature consolidator: The feature consolidator trains the consolidator CNN
to predict the position of the object with the selected features.

• Pursuer: The pursuer generates and evaluates candidates, from which the
best candidates is HIOB’s prediction for a frame. The prediction is accom-
panied by a confidence value, that indicates how good HIOB thinks the
prediction is.

• Updater: The updater adapts the model representation of the target object
during tracking. Technically, this is done by training the consolidator CNN
on the extracted, visual features, if the appearance of the object changed
significantly.

Springstübe split the tracking task into four different subtasks, where each
subtask contains the components needed to handle the specific subtask. The four
subtasks are:

• ROI calculation: Under the assumption that the target object can only trans-
late a limited distance between to frames, the search space for the object in
the next frame is limited to the region of interest (ROI), based on the posi-
tion of the object in the previous frame. The region of interest is often much
smaller than the complete input image, which is why the first subtask in the
HIOB framework handles the calculation of the region of interest. Like this,
only the region of interest needs to be analyzed for each frame, instead of
the entire input image.

• Feature extraction: Visual features, that discriminate the object from the
background, are extracted using a pre-trained CNN (specifically, the VGG16
from Simonyan and Zisserman [29] is used). The visual features from the
CNN are ranked to determine the most significant features and to filter out
features that correspond to other objects that the CNN has been pre-trained
on.

• Feature Consolidation: The extracted visual features are incorporated into a
single feature mask, which can be thought of like a heat-map, indicating the
most likely position of the object. This consolidation is done by an online

22



3.1. The fully convolutional hierarchical object tracker HIOB

Figure 3.1: The workflow through all components of the HIOB framework. Figure
taken from [30]

trained CNN, which updates throughout tracking when the appearance of
the object changes.

• Pursuing: The feature mask is evaluated to find the bounding box that cor-
responds to the most likely position.

The workflow through the HIOB pipeline is visualized in figure 3.1.
Of specific interest is the updater component, which is part of the consolidation

subtask. The updaters job is to adapt HIOBs internal object representation to the
changing appearance of the object. This can be caused by the object undergoing
significant scale changes. There are different strategies used to determine whether
an update of HIOBs internal representation is reasonable. If an update is executed,
the updated triggers the consolidator network to train on the current frame, so
that the predicted position is the output of the selected features. Like this, HIOBs
internal object representation now includes a new set of features, corresponding to
the changed appearance of the target object.

23



Chapter 3. Related work

This is the ideal spot in the pipeline for our scale estimation module to adjust
the prediction. Assuming that the scale estimation module accurately outputs the
correct size of the object, based on the predicted position, we can now tell HIOB
to learn the representation of the object at different scales. This also means that
the wrong estimation of the scale would cause the consolidator to learn the wrong
features, corrupting the model and resulting in bad tracking performance.

To avoid confusion, the VGG16 feature extractor CNN is fully static, meaning
that we can not tell the net to extract different features or scale its features.
Thus, the feature extractor remains unaffected from the scale estimation module.
However, because of the updater component, we can tell the consolidator CNN
(the online CNN) to combine different features to produce the prediction mask.
Like this, a representation of the object at the estimated scale is learned.

This concludes the description of the HIOB tracking framework. A full, in-depth
description of the framework is provided by Springstübe [30].

3.2 On computational load and real-time perfor-

mance

In his bachelor Thesis, Tobias Knöppler analyzed the HIOB tracking framework
with regard to real-world, robotic applications and both extended and optimized
its pipeline to be able to process incoming streams of video data in real time
[21]. Building upon this, Heinrich et al. introduced HIOB in combination with the
Neuro-Inspired COmpanion (NICO) robot by Kerzel et al. as a research platform
for developmental robotic research [17, 19].

This indicates that the employment of HIOB in robotic agents operating on
real-time poses a major, practical use case of the HIOB tracking framework, which
should be considered in the analysis of available algorithms for the problem of scale
estimation.

For specific cases like developmental robotics research, or more generally, real-
world tasks, it is obvious that processing speed is a key factor, as robotic agents
interacting with the real world need to be able to react to (not only) visual events
as fast as possible. For example, autonomous vehicles need to be able to react
to the detection of pedestrians or other vehicles immediately and make decisions
based on what is happening in the real-world.

This leads to the conclusion that one of the major deciding factors between the
available scale estimation algorithms should be the computational complexity of
the algorithm, specifying the additional computational load that will be included
into the HIOB framework by implementing the algorithm. Under consideration of
the above, the focus should be primarily on finding a solid scale estimation algo-
rithm that achieves strong results at low computational cost, versus an algorithm
that achieves near perfect results but at disproportionally higher computational
cost.

24



3.3. Possible algorithms for scale estimation

3.3 Possible algorithms for scale estimation

This section provides an overview of existing approaches to the problem of scale
estimation. The approaches are analyzed with the motivation whether they apply
to the HIOB framework and its usage with the developmental NICO robot [19].

3.3.1 Using depth-sensors

With the increased availability of cheap depth sensors like the Microsoft Kinect
sensor, a novel research field emerged, dubbed RGB-D tracking emerged in recent
years. In RGB-D, information about the depth (specifically the z-axis order of
object) and the color frame is analyzed to increase tracking results. In classical,
RGB tracking, only the color frame is analyzed [1]. RGB-D opens up new ways of
tackling classical problems in visual object tracking.

Exploiting the depth information, Meshgi et al. provide a solution to the prob-
lem of occlusion of the target object [26]. Additionally, Meshgi et al. handle scale
variations by sampling the image with a variety of particles of different size. The
particles are selected based on the overlap with the target. However, this is ap-
proach requires a scale adaptive model, which Meshgi et al. obtain from exploiting
the depth channel.

Camplani et al. extend the RGB correlation filter based KCF tracker to handle
scale variations. SE is achieved by computing a set of quantized scale factors (which
enables pre-computing specific matrices and speeds up computation) and setting
the scale to the factor, that is closest to the depth of the object at the current
frame, relative to the depth at the initial frame. The template of the correlation
filter is then scaled accordingly.

There are still differences in how exactly the scale is extracted from the depth
data. Simply scaling the model based on the available depth data introduces little
computational overhead, compared to many other approaches at scale estimation,
that often maintain a pool of scale templates or classifiers [8, 9, 25, 34] which makes
depth-based approaches specifically attractive for robotic use cases, where it is of
high importance that the computation time remains as low as possible so that the
robot has time to react to events [21].

While the depth-based approaches seem rather promising, the constraints of
the use cases of the HIOB framework have not yet been considered. As mentioned
earlier HIOB is used in combination with the Neuro-Inspired COmpanion (NICO)
robot, specifically in the fields of developmental robotics research, where the goal
is to study and apply human cognitive functions involved in the learning process of
children to the fields of robotics. This means, that depth must not be used to derive
additional information about the target object during tracking, as young infants
still need to develop a sense for depth based stereo vision. This harsh constraint
forbids the use of depth-data for scale estimation.

25



Chapter 3. Related work

3.3.2 Patch-based

An algorithm capable of detecting and handling scale changes that does not require
information from the depth channel has been introduced by Xu et al. [34], in which
the central idea is to divide the target object into four different patches and train
a classifier on each patch. A classifier, in this case, means that the task of object
localization is defined by classifying image locations into either background or
object, which is commonly seen and is referred to as tracking by detection [34].

Specifically, a scale factor is calculated between frame t and t − 1, where pt−1
denotes the center position and wt−1×ht−1 denotes the scale in the t− 1 frame. In
the t−1-th frame an image patch xt−1 is extracted centered on pt−1 and resized to
be be of W ×H. The patch is xt−1 is then divided into four patches, whose central
locations are (w1(t− 1), h1(t− 1)), (w2(t− 1), h2(t− 1)), . . . (w4(t− 1), h4(t− 1)).
On each of those patches a new classifier is trained, so that there a four different
classifiers [34]. See figure 3.2 for a visualization of the patch based approach and
how it is used to determine the change of scale between two frames.

Figure 3.2: Scale calculation using the patch based approach The matching points
in the t-th frame are obtained from the classifiers trained on the four patches in
the t − 1-th frame. The new scale is calculated using equation 3.1. Figure taken
from [34].

The scale in the t-th frame is obtained after first localizing the object. After
localization, an image patch xt is extracted and resized to W × H and the four
patches are extracted as described above. For each patch a confidence score is
calculated, where the highest confidence scores in each patch corresponds to the
matching points of the patches in the t − 1-th and t-th frame, which are denoted
by (w1(t), h1(t)), (w2(t), h2(t)), . . . (w4(t), h4(t)). Like this, the scale factor between
two frames can be found by the following equation, where δ is a weighting param-
eter, making the results more robust:

26



3.3. Possible algorithms for scale estimation

γt =

√√√√( ∑4
j=1 δj|wj(t)|∑4

i=1 δi|wi(t− 1)|

)
.

( ∑4
j=1 δj|hj(t)|∑4

i=1 δi|hi(t− 1)|

)
(3.1)

A more detailed described of the patch based classifiers and the model is pro-
vided by Xu et al. [34]. While this approach achieves superior results on 10 chal-
lenging scale variations sequences from the TB100 dataset [33, 34] it comes at the
cost of relatively high computational overhead. In fact, the computational com-
plexity of this approach grows linearly with the number of classifiers deployed [16].
This makes the approach unattractive, as it is a key requirement for robotic use
cases to operate in real-time.

3.3.3 Sample-based

This section introduced a collection of algorithms, which follow the general idea
of sampling the search space around the target object at different scale factors
and finding the sample which best corresponds to the size of the object from the
previous frames. Such approaches are intuitive and are widely used in trackers
which do not use the depth channel for additional information about the scale.
There are different ways of actually determining the best size, like Li et al., who
sample their appearance model at multiple resolutions [25].

While the algorithm provided by Li et al. [25] could possibly be integrated into
the HIOB pipeline, the approach comes at a large computational cost, as the entire
translational model needs to be sampled at multiple resolutions, performing an
exhaustive search, to obtain the scale accurately [9]. This makes the approach not
suitable for real-time tracking, which is a secondary requirement for an algorithm
that could be integrated into the HIOB pipeline.

Contrary to the previous approach, Danelljan et al. [8, 9] propose a 1-dimensional
scale filter, that operated independently of the translational model. The scale fil-
ter can be applied at different locations and outputs correlation scores in the scale
domain, where the highest correlation score corresponds to the ideal scale of the
actual object. The fact that the scale filter proposed by Danelljan et al. works
independently of the translational model is noteworthy because this means that
the scale filter can be separated from the tracker and included into any tracker
without a scale estimation component [9].

Closely related to the approach from Danelljan et al. is the approach of Sun
et al., who extracted samples from their feature map instead of sampling on the
image directly [31]. This could, however, be seen as sampling on the image and then
obtaining a feature representation, which is what Danelljan et al. do, emphasizing
the similarity of the two approaches.

Du et al. also refer to the work of Danelljan et al. for scale estimation [11].
However, Zhu et al. found that correlating the samples in the Fourier domain is
not necessary and instead take the dot product of the differently sized samples
in the feature space directly and apply a smooth filter after each estimation [11].

27



Chapter 3. Related work

However, the idea of using an isolated scale estimator that operates based on
samples at different scale factors is the same.

What can be taken away from this is that while the implementational details
of the algorithms differ, the intuitive idea of sampling the image at different scale
levels and finding the best fitting sample is shared across the algorithms. The
computational complexity of the algorithms is heavily impacted by the specific
implementations, and is, thus, hard to generalize. The exhaustive search of the
algorithm provided by Li et al. [25], for example, has such high computational
cost, that the approach is inapplicable for real-time tracking, while the separate
scale filter provided by Danelljan et al. (specifically the fast implementation) runs
at up to 50 fps, which is fast enough for real-time tracking.

28



Chapter 4

Approach

The goal of this thesis is to find and implement a robust algorithm for handling scale
changes of the target object during tracking. This chapter describes how the goal
has been approached. While the available algorithms have already been presented
and discussed in Chapter 3, this chapter covers the implementation details and
additional design choices. Two main algorithms have been implemented, which
both have been extended to be able to output the scale change independently
over two axes. Additionally, update strategies have been implemented to further
optimize the behavior of the algorithms. A new metric has been introduced for the
specific evaluation of the scale estimation algorithm, which will be explained.

4.1 Dealing with the computational load

Including a new module into the HIOB tracker, aiming at correctly estimating the
size of the object throughout tracking, comes at the cost of higher computational
load. As it has been described in 3.2, it is desirable and necessary to keep the
computational load as low as possible, allowing the tracker to process input faster.
It has been pointed out by Danelljan et al. [8, 9], that the translational difference
of the object between two frames is (usually) greater than the difference of the
object in terms of its scale (i.e. the object moves instead of growing or shrinking).
Danelljan et al. argue that it is viable to apply any scale estimation algorithm
after the tracker already predicted a new position. This reduces the computational
load of the algorithm significantly, as the entire algorithm is only applied once per
frame, instead of once per possible location. This design choice has been transferred
to the HIOB scale estimation module, meaning that independently of the different
algorithms that have been implemented (Candidates and DSST), the algorithm
will always be executed after the position of the object (on the current) frame has
been determined.

29



Chapter 4. Approach

4.2 The scaled candidates approach

The first approach that has been implemented is referred to as the Scaled Can-
didates Approach. Note that a Candidate simply refers to a set of coordinates
(x, y, w, h), describing the target object on the current frame. The broad idea of
generating additional, scaled candidates has been introduced by Springstübe in his
original work on the HIOB tracker, where the problem of HIOB not being able to
handle changes in the size of the target object is brought up [30]. In section 3.1,
the pipeline of the HIOB tracker has been examined and explained, including the
process of generating a number of translational candidates. The scaled candidates
approach expands on this, by generating an additional, parameterized number of
candidates, which are based on the most likely, predicted position. Similar to the
purely translational, unscaled candidates used for determining the position of the
object, the candidates for the scale are evaluated on the prediction mask. How-
ever, a new set of mechanism and heuristics is included that refines the evaluation
process of the scaled candidates, so that accurate estimation of the scale becomes
possible.

4.2.1 Generating additional candidates

The process of generating additional candidates to determine the scale of the ob-
ject at the current frame is rather plain. In order to create those candidates, the
unscaled prediction for the position of the object at the current frame is taken
as input for the algorithm. Note that this prediction is the position deemed most
likely for the position of the object at the current frame, instead of every possible
location, for reasons described in the previous section.

The amount of candidates that will be generated is given by the parameter
number scales. To assure that the amount of generated candidates that are smaller
and those that are bigger than the input candidate is the same, number scales
must always be odd. A second parameter scale factor between patches deter-
mines the factor which lies between two candidates, determining how finely the
scale space is covered. Thus, a high value for number scales and a small value for
scale factor between patches result in a precise and wide coverage of scale factors,
at the cost of higher computational load.

Only varying the width and height of the input candidate is not enough, as the
position of the generated candidates is given by the x and y coordinates. If the
width of a candidate would be doubled, but the x coordinated left unchanged, the
center of the candidate shift towards the right. The same is true for the height and
the y coordinate (this is an implementation detail in HIOB). It is, thus, necessary
to also adjust the x and y coordinates of the generated candidate in such a way,
that the candidate remains centered on the target object. The candidates generated
based on the predicted position with adjusted x and y coordinates are visualized
in figure 4.1.

30



4.2. The scaled candidates approach

Figure 4.1: The additional candidates generated on the 20th frame of the tracking
sequence CarScale form the TB100 Dataset. The cyan square marks the region of
interest, the yellow rectangle shows the predicted position of the tracker. For a
better overview only a few of the generated candidates are shown in magenta

4.2.2 Rating an individual candidate

The process of evaluating the scaled candidates in order to estimate the current
scale of the target object is similar to the process of evaluating the positional
candidates, which has been described in 3.1. The evaluation processes are similar,
as both make heavy use of HIOB’s internal prediction mask. For a more detailed
description of the feature mask please refer to Peer Springstübes original work [30].

Just like in the evaluation process of the translational candidates, each scaled
candidate first gets converted to the coordinate system of the 2D prediction mask.
As described in 3.1, the mask is the result of the feature consolidator, which can
be visualized as a heat map, with high values corresponding to a high likelihood
of the region on the heat map belonging to the target object.

However, in the evaluation of the translational candidates, a score is obtained by
summing up the values on the prediction mask that are contained by a candidate.
This does not work for the scale estimation problem, because finding the candidate
with the highest absolute sum of likelihoods when the scale is varied would mean
that the biggest candidates always achieve the highest score. Thus, a mechanism
is needed that also punishes candidates, relative to the candidate’s size.

Once a candidate has been converted to the size of the prediction mask, the
score is calculated that rates each individual, scaled candidate. The score each
candidate achieves depends on two threshold parameters, inner punish threshold
and outer punish threshold. The value of the parameter inner punish threshold
determines, how small the likelihood of each location on the heat map is allowed
to be, before the candidate gets punished (punishing the candidate can be thought
of as increasing the candidates punishment score) for containing locations with a
lower likelihood than the value of that parameter. For each location contained by
the candidates that is smaller than the value of inner punish threshold, the value

31



Chapter 4. Approach

of the location on the prediction mask is extracted and saved, when each location
has been checked, the saved values from the heat map are summed up, creating
the first part of the candidates rating/punishment score.

Similarly, the parameter outer punish threshold determines the threshold like-
lihood value at which the candidates rating is reduced for not containing locations
that have a higher likelihood of belonging to the target object than the value of the
parameter. For each location that is not contained by the scaled candidate that is
bigger than the value of the parameter outer punish threshold, the value of that
pixel is extracted from the prediction mask. The sum of all of those values forms
the second part of the punishment score for a scaled candidate. The two scores

• Outer punish value: The punishment score of a candidate for not containing
values of high likelihood on the predication mask.

• Inner punish value: The punishment score of a candidate for containing values
of low likelihood on the prediction mask.

are finally added together to obtain the punishment score of a candidate, which is
later used to find the candidate whose size best corresponds to the actual size of
the target object on the current frame. This procedure is applied to each previously
generated candidate in order to obtain a measurement that can be used to compare
and select the candidate with the size closest to the current, actual size of the target
object.

To obtain a smoother scale estimation, the parameter scale window step size
increases the obtained punishment score, depending on how much the scale factor
of a candidate divergence from 1. By doing this, the algorithm can only change the
scale factor when a candidate achieves a significantly better scale rating and does
not produce an unstable size curve. This idea has been borrowed from Danelljan et
al, who employ a Hann window to achieve the same effect [9]. Thus, the final pun-
ishment score for each candidate is obtained from the multiplication of the inner
outer sum with the scale window, which increases the punishment for diverging
from 1.

The process of finding the punishment score based on the prediction mask for
exemplary candidates is shown in 4.2.

4.2.3 Candidate selection

Considering how every candidate, generated by the scaled candidates algorithm,
is rated, finding the candidate with the size closest to the actual size of the target
object is a trivial task. Selecting the candidate with the size closest to the actual size
of the target is done by finding the candidate that has the smallest punishment sum.
Recalling how the punishment score of a candidate is calculated, the punishment
score corresponds to the sum of likelihoods on the prediction mask, that are either
lower than a defined parameterized threshold and contained by the candidates
bounding box or higher than another parameterized threshold but not contained
by the candidates bounding box and have been multiplied with the scale window.

32



4.2. The scaled candidates approach

(a) The smallest generated candidate
on the prediction mask, the candidate
does not contain locations with small
likelihood values, but gets punished for
not containing the surrounding values of
high liklehood

(b) The biggest generated candidate on
the prediction mask, the candidate does
not get punished for missing values of
high liklihood (as oposed to the smallest
candidate), but gets punished for con-
taining some values of low liklihood.

Figure 4.2: Two candidates of the same frame visualized on the prediction mask.

After the best fitting candidate has been found, the coordinates of that candidate
will be used as the final prediction of the tracker for the current frame (width
and height with adjust x and y values) If the parameter max scale difference
is supplied, the change in size is limited, so that the scale difference compared
to the previous frame is not greater than the value of the parameter, this can be
understood as a form of regularization.

4.2.4 Candidates: Static aspect ratio

The three preceding sections can be understood as the basic implementation of the
Candidates scale estimation algorithm. This idea has been proposed by Springstübe
in his original work on the HIOB framework [30]. As this version of the algorithm
has already been described in the preceding three sections, it is enough to note
that this version of the algorithm is referred to as static version of the algorithm,
because only one scale factor is maintained. This factor is applied to both the x and
y-axis. Thus, the aspect ration remains static during tracking and is determined
by the shape of the object on the initial frame.

33



Chapter 4. Approach

(a) This set of candidates has been gen-
erated by only adjusting the height and
accordingly the y coordinate based on
the prediction for this frame.

(b) similarly to the set of neighboring
candidates, this set of candidates has
been generated by only changing the
width and adjusting the x coordinate
accordingly.

Figure 4.3: The two sets of generated candidate, the 20th frame of the sequence
CarScale of the TB100 Dataset has been used. For the sake of better overview,
only some wo candidates of the same frame visualized on the prediction mask.of
the generated candidates are visualized. The rating of each candidate is achieved
as describe in section 4.2.2.

4.2.5 Candidates: Dynamic aspect ratio

This variation of the scaled candidates algorithm is able to handle cases where
the object shrinks or grows unevenly over its x and y-axis, compared to the initial
implementation of the algorithm, where the same scale factor would be applied
on the x and y-axis of the object, assuming that the object never changes its
orientation towards the camera.

Such cases, where the scale of the object on the x and y-axis change indepen-
dently of each other, occur primarily when the real, 3D-object rotates, causing a
distortion of the object on the 2D-image representation. As it has been described
in section 2.8, the problem of the target object rotating is a different problem with
a completely new and different set of challenges and doesn’t originally fall in the
scope of this thesis. Yet, the problem of estimating the scale of the object and the
problem of handling changes in the aspect ratio (i.e. reacting to in-plane rotation
of the object) of the object are related, at least in the sense of the tracker having
to adapt its internal object representation to match the new appearance of the
object. Even though it seems as if an object does not change it’s appearance when
only increasing or decreasing its scale, this is not true for a convolutional tracker,

34



4.3. The DSST algorithm

where different features visual features represent a bigger or smaller version of an
object, thus causing the need to learn a new set of weights.

This relatedness of the two different problems and the fact that only slight
changes of the algorithm were necessary to achieve independent scale factors for
the x and y-axis lead to the decision of implementing this variation of the static
candidate generation algorithm.

The following changes have been made to the static version of the scaled can-
didates algorithm: Instead of generating only one set of number scales candidates
and scaling them accordingly, two distinct sets of candidates are generated. For
every set of generated candidates, only one axis (either x or y) is scaled, and the
other axis is kept unchanged. This produces a total of 2 ∗ number scales candi-
dates. There is no need to change how an individual candidate is rated/punished,
thus the rating of every candidate is done exactly as described in section 4.2.2.

The distinct sets of candidates that are being generated by only changing one
axis of the positional prediction for this frame are visualized in Figure 4.3.

After each individual candidate has been rated, the best candidate from each
subset is selected and the scale factors of those two candidates are accepted as
scale change on the axis corresponding to the candidate. A final candidate is thus
generated, with the scaled x and y-axis according to the best candidates from each
set. Like this, it is possible to maintain two independent scale factors, on for the
x and another for the y-axis.

4.3 The DSST algorithm

The second algorithm which has been implemented has originally been introduced
by Danelljan et al. [8] in 2014. In a second paper by Danelljan et al. [9], the
algorithm has been further optimized and enhanced. A reference implementation of
the entire Descriminitive Scale Space Tracker (DSST) tracker in Matlab is provided
by Danelljan et al. [7], from which the components relevant for estimating the scale
have been extracted and included in the HIOB tracking framework [30].

The following paragraphs contain a detailed description of the improved version
of Danelljan et al.’s algorithm, based on how the algorithm has originally been
presented [9, 8]:

Danelljan et al. make use of the Minimum Output Sum of Squared Errors
(MOSSE) correlation filters [3], which have been described in section 2.5.2. The
DSST tracking framework works by learning two separate MOSSE correlation fil-
ters: One 2D correlation filter for estimating the translation (i.e. predicting the
position) of the object and a second, 1D correlation filter estimating the scale of
the target object. The two-dimensional, translational filter is not relevant for this
thesis, because the HIOB tracking framework provides the translational prediction
for each frame, so only the part of the algorithm that estimates the scale of the
object will be utilized and explained.

The one-dimensional correlation filter can be applied at any location of a frame
and compute correlation scores on the scale dimension, where the highest corre-

35



Chapter 4. Approach

Figure 4.4: The scale sample from the DSST scale estimation algorithm. S scaled
patches are extracted from the image at time t. A feature vector f is obtained
from the HOG feature descriptor. The length d of a feature vector depends on how
HOG is configured but is the same across one sample, because the image patches
are resized to the same size. Figure taken from [9].

lation score corresponds to the scale changes of the current frame compared to
the previous frame. The one-dimensional correlation filter for the scale dimension
works by extracting multiple image patches with varying size, centered on the po-
sition of the target object. How many patches are extracted and how fine-grained
the scale steps between two patches are, is determined by the parameter values of
number scales and scale factor between patches (like in the candidate approach,
number scales is required to be odd).

Each extracted patch gets resized to the initial size of the target object
(or to the closest approximation that can be processed by the feature descrip-
tor). Once each patch has been resized to the same size, a d-dimensional fea-
ture vector is created by the feature descriptor. More formally, W × H denotes
the initial target width and height of the object on the initial frame of the
tracking sequence, and number scales denotes the size of the correlation filter
(i.e. how many patches are extracted). For each n ∈

{
−n scales−1

2
, ..., n scales−1

2

}
an image patch In gets extracted. The scale factor for that patch is obtained
from the scale factor between patches parameter at n steps away from 1. Thus,
scale factornW × scale factornH, denotes the image patch size at scale level n.
The process of extracting multiple patches, which make up a test or training sample
for the filter, is visualized in 4.4.

For the d-dimensional feature vector of a resized image patch, Histogram of
Oriented Gradients (HOG) features with a 4×4 cell size are extracted. The output

36



4.3. The DSST algorithm

of the HOG algorithm is the d-dimensional feature vector and the collection of each
feature vector (one per extracted patch) is referred to as a sample f . The feature
domain of the sample is expressed as f l, where l can be understood as the i′th
entry in the feature vector (i.e. one feature), across each extracted image patch In
in the sample f .

The goal is now to learn a correlation filter h, with one filter hl per feature
(entry in the feature vector) across each image patch In in f , which is achieved
by minimizing the L2 error between the actual correlation output and the desired
correlation output g. This is described by Equation 4.1, where ◦ corresponds to
circular correlation.

ε = ‖g −
d∑
l=1

hl ◦ f l‖2 + λ
d∑
l=1

‖hl‖2 (4.1)

The second term in (4.1) is a weighted regularization, which is needed to prevent
division by zero in the next step. The desired correlation output is typical of
Gaussian nature, which is typical for correlation filters.

Eq. (4.1) can efficiently be solved in the Fourier domain, thus, eq.(4.2) is ob-
tained by applying Parseval’s theorem [20] to eq. (4.1), where capital letters denote
the discrete fourier transformation applied to the specific entity, and the G and F
denotes to the complex conjugate [14] of the specific complex number, for G and
F respectively:

H l =
GF l∑d

k=1 F
kF k + λ

, l = 1, ..., d (4.2)

A detailed derivation of eq. (4.2) is provided by Danelljan et al. [9]. For reasons
explained in section 2.3, all multiplications in eq. (4.2) need to be applied point-
wise, which can be considered true for other cases in this thesis, except when noted
otherwise.

With eq. (4.2), the optimal correlation filter h for a single sample (i.e. one frame)
can be obtained. This is insufficient, as multiples samples across time need to be
considered to obtain a robust correlation filter h throughout a tracking sequence.
The robust correlation filter can be achieved by averaging the correlation error in
eq. (4.1) over the samples ft at different time steps.

As the numerator and denominator of eq. (4.3) can be updated at slightly
different steps in the algorithm, the following equations show how the numerator
Alt and the denominator Bt of the correlation filter H l

t from eq. (4.2) can be updated
with a new sample ft+1 from the next time step, with η referring to the learning
rate:

Alt = (1− η)Alt−1 + ηGF l
t , l = 1, ..., d (4.3a)

Bt = (1− η)Bt−1 + η

d∑
k=1

F k
t F

k
t (4.3b)

37



Chapter 4. Approach

The only thing that is left now is to apply the correlation filter. Therefore, in
a frame at time t, a sample zt is extracted. Thus, zt corresponds to the collection
of feature vectors from the extracted image patches at different scale levels. Now
Z l
t can be obtained like described, in the same way as H l from eq.(4.2) has been

obtained from the feature vector for each image patch in eq. (4.1). The discrete
Fourier transform of the correlation scores resulting from applying the correlation
filter based on the sample Z l

t are obtained by

Yt =

∑d
l=1A

l
t−1Z

l
t

Bt−1 + η
(4.4)

,

where Alt−1 and Bt−1 are the numerator and denominator from the previous
frame. The final correlation scores yt are obtained by taking the inverse discrete
Fourier transform yt = F−1{Yt}. Now, yt contains a score for each extracted image
patch, where the highest score corresponds to the extracted image patch that came
closest to the scale of the actual object.

A brief write-up of the DSST Scale Estimation Algorithm is provided in algo-
rithm 1.

Algorithm 1 DSST Scale Estimation Algorithm

Input:
Current Frame In
Predicted position pt
Scale model At−1,scale, Bt−1,scale
Output: Estimated scale st, Updated model At,scale, Bt,scale

1: Extract scale Sample:
2: for n scales, scale factors do
3: Create scaled image patch from In, position based on p.
4: Resize image patch to fit to the model.
5: Create feature Vector f l for current patch.
6: end for
7: Get the the main correlation filter Z l

t based on the collection of feature vectors
using eq. 4.2.

8: Get the correlation scores Yt using eq. 4.4, inserting the correlation filter ob-
tained in the previous step.

9: Find the maximum correlation response in yt by tacking the inverse DFT of
Yt and backtrack the scale factor that has been used to create the image patch
with the maximum response.

10: return The scale factor st of the maximum correlation score, updates model
At−1,scale,Bt−1,scale

38



4.4. Update Strategies

4.3.1 DSST: Dynamic aspect ratio

For the same reasons as described in section 4.2.5, the algorithm by Danelljan et
al. [9] has been extended to be able to scale the bounding box independently on
its x and y axis. The same approach as described in section 4.2.5 has been used to
achieve independent scaling of the x and y-axis.

The main difference to the base implementation of the algorithm is that two sets
of image patches are being extracted, each set extracting patches scaled only on
either the x or the y axis, leaving the other axis unchanged. After the extraction of
the image patches, each patch gets resized to the initial size of the target object, and
the feature vector is created, in the same manner as in the basic implementation
of the algorithm.

In order to rate the scaled candidates independently of each other, it is necessary
to maintain two separate correlation filters, one for each axis/set of scaled image
patches. The construction and maintenance of each correlation filter are the same
as in the base version of the algorithm. Thus, each correlation filter still outputs
correlation scores corresponding to the scaled patch that appears to be closest to
the model representation of the target object.

The image patches with the best scale level can thus be found for each axis sep-
arately, and the final output bounding box of the algorithm is created by adjusting
the predicted position in such a way, that the center of the new bounding box and
the center of the input bounding box are the same, while the new bounding box
has the new, calculated width and height.

4.4 Update Strategies

As stated in section 3.1, the HIOB tracker is based on the FCNT tracker by Wang
et al. [32]. In the initial implementation of the FCNT, Wang et al. introduced,
without specifically using the term, some form of update strategies. For examples,
Wang et al. update one of their internal neural networks with the most confident
tracking result from the past 20 frames, in order to keep the model representation
of the target object up to date, which can be understood as a simplistic update
strategy. Not running any update strategy would correspond to updating every
model or the weights of every net on each frame, making assumptions that might
not hold, for example, that the target object is present in each frame of the tracking
sequence.

Expanding on the update strategy introduced by Wang et al. [32], Springstübe
introduced a number of update strategies that have been included into the HIOB
tracker [30]. The same update strategies have been implemented in the scale es-
timation module. For the experiments that are conducted in chapter 5, HIOB is
always configured to use the best performing update strategy. However, it can not
be assumed, that the update strategy that works best for the translational predic-
tion also works best for the scale estimation algorithm. Thus, the update strategies
described in the following sections only refer to when the Scale Estimation mod-

39



Chapter 4. Approach

ule is run, and have no effect on when HIOB is updating its internal model of
the target object. By doing this, HIOB still only update its model representation
of the target when it is considered necessary, while the performance of the scale
estimation module can be explored independently of HIOBs configuration.

4.4.1 The max update strategy

This update strategy is naive, running the scale estimator on each frame and
provides a baseline for comparison. The update strategy Max update (short max)
thus utilizes each frame as training date, not making any assumption about the
goodness of the current frame. For the sake of keeping the scale stable and trying to
achieve a smooth scale curve instead of jumps in the scale caused by bad frames,
the parameter limit scale change is supplied for the Candidates algorithm, with
a value of 0.1, which has been determined in the the parameter optimization to
achieve the best results for this strategy. While different operations can be used
to achieve a smoother scale output over time, many scale estimation algorithms
employ a mechanic like this [9, 11].

4.4.2 The confidence window strategy

The update strategy High Gain Combined (HGC) is the most promising update
strategy introduced by Springstübe [17] for the translational prediction. The up-
date strategy tries to keep the representation of the target object updated, by en-
forcing the execution of the scale estimation module at least once every 20 frames.
Additionally, the model is only updated, when the confidence of the final, trans-
lational prediction is greater than 0.2 and less than 0.4. This confidence window
aims at only updating the model when the appearance of the target changed sig-
nificantly (confidence must be less than 0.4), but also prevents bad frames (e.g.
strong occlusion) from corrupting the model (confidence must be greater than 0.2).

This idea is adopted for the scale estimation module. In order to only update the
scale when the object actually changed its scale, a frame is only considered to have a
significant scale change when the confidence of the frame is less than 0.4. To ensure
that the scale estimation model is not executed on a bad frame, the same lower
confidence threshold of 0.2 must also be satisfied for the scale estimation module
to execute. If the ”20 frames without execution” mark is exceeded, updating the
scale and the is triggered, independently of the confidence of the current frame.

To prevent confusion between the update strategy for HIOBs consolidator CNN
and the scale estimation module, the update strategy that controls the scale esti-
mation module will be referred to as the confidence window strategy (CWS), even
though it is an implementation of Springstübes HGC update strategy.

40



4.5. Datasets

Figure 4.5: Exemplary frames from the TB100 dataset, which contains diverse
footage from different settings. The datset shows multiple challenging aspects,
like cluttered background, scale variations, low resolution footage, motion blur,
occlusion or illumination variations.

4.5 Datasets

Two distinct tracking datasets and a small training subset have been used in this
thesis.

The TB100 dataset by Wu et al. is the first dataset used in this thesis. The
Online Tracking Benchmark has been created with the specific goal of satisfying a
diverse range of challenging tracking conditions [33]. Initially, Wu et al.’s dataset
consisted of only 50 sequences, but the dataset has been extended later. The more
recent, extended version of 98 distinct sequences (two sequences contain two targets
and are treated like two different sequences) will be used in this thesis and will be
referred to as TB100 dataset.

The sequences in the TB100 dataset are annotated with attributes describing
the main challenges in the different sequences. By finding the sequences that share
a specific attribute, a subset can be found corresponding to that attribute. For
example, all sequences that have the Scale Variation (SV) attribute are selected
into the SV-subset. This enables in-depth analysis and comparison of different
trackers, as conclusions can be drawn regarding the strengths and weaknesses of
a tracker for the specific attribute, like the performance on sequences with the
attribute scale variation or In-Plane-Rotation (IPR). It should be noted, that the
attributes are not unique per sequence, meaning that one sequence usually has
multiple attributes and in turn is part of different attribute-subsets. An exemplary
overview of sequences from the TB100 dataset is provided in Figure 4.5.

Motivated by this, the tracking results of the different algorithms in this thesis
will be reported by finding the average achieved metrics scores over the attribute
subsets. This summarizes the results for each tracking sequences into broader
groups, while insight responding to the attributes of the different groups can be
gained.

41



Chapter 4. Approach

Figure 4.6: Exemplary frames from the NICO dataset, which contains HD-RGB
footage of the NICO robot interacting with various objects. Typical challenges for
robot-environment interaction, like strong occlusion of the target by the robot’s
hands, are present in the entire dataset.

A small training subset has been formed from the TB100, consisting of 20
sequences. The sequences have been selected with regard to the attribute balance
in the subset, so that the percentage-wise occurrence of each attribute over the
sequences is as equal as possible, partly limited by the fact that some attributes
have few sequences in the complete TB100, to begin with.

The NICO dataset is the second dataset that is used in this thesis and has been
created by Tobias Knöppler [21]. Contrary to the TB100 dataset, which tries to
cover a wide spectrum of sequence categories, the NICO dataset consists of 60 se-
quences that have exclusively been filmed through one of the onboard eye-cameras
of the NICO (Neuro-Inspired COmpanion) robot. Thus, the sequences show the
NICO robot interacting with various objects, introducing typical challenges for
robot-environment interaction like occlusion of the target object by the robots
hands [21]. Exemplary frames from the NICO dataset are provided in Figure 4.6.

One of the practical use-cases for the HIOB tracking framework is to employ
HIOB in developmental robots like NICO [17]. For this reason, the performance of
the different approaches on the NICO dataset should be thoughtfully analyzed, as
the NICO dataset was designed to specifically capture robot-environment interac-
tions.

On a technical level, each sequence consists of a set of images, bounding box
coordinates of the object for each image and optionally a set of attributes for each
sequence. This is the case for both the TB100 and the NICO dataset. Based on the
coordinates, the predictions of the tracker can be compared to the ground truth
and the performance of the tracker can be evaluated.

42



4.6. Evaluation metrics

0 10 20 30 40 50
Center distance [pixels]

0.0

0.2

0.4

0.6

0.8

1.0
Oc

cu
rre

nc
e

Precision(20) = 0.883

(a) The precision plot with the cor-
responding precision score. The verti-
cal line indicates the threshold value
of 20px. The precision score of 0.883
means that 88.3% of all frames have a
center location error smaller than 20px.
For datasets recorded at varying resolu-
tions, the threshold value of 20px needs
to be adjusted.

0.0 0.2 0.4 0.6 0.8 1.0
Overlap score

0.0

0.2

0.4

0.6

0.8

1.0

Oc
cu

rre
nc

e

AUC = 0.624

(b) The success plot with the corre-
sponding success score. The plot shows
the success score between 0 and 1. The
rating score is the area under the curve.

Figure 4.7: The example plots for the metrics precision and success in comparison.

4.6 Evaluation metrics

A total of three different metrics is used to evaluate the tracking results in this
thesis. Additionally, the time needed for the different algorithms will be gathered,
in order to determine whether an algorithm is feasible for real-time application
on the NICO robot [21]. The first two metrics, Precision and Success are used
from the Visual Tracker Benchmark by Wu et al., who also provide the TB100
Dataset1 [33]. Those two metrics are widely used throughout the visual tracking
community, and can thus be used to compare the results of the HIOB tracker,
specifically with the scale estimation module, with other trackers. A third metric
will be used to specifically measure the results of the scale estimation module,
which will be referred to as Size error.

4.6.1 The precision plot

The precision plot has initially been introduced by Babenko et al., but is also
used by Wu et al. to report the results of their tracking analysis[2, 33]. Previously,
tracking results were often reported by taking the frame number and the center
location error (the Euclidean distance between the center of the predicted bounding
box and the center of the ground truth bounding box). The mean values over the
number of frames would then be taken as a measurement of tracker performance.

1http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html

43

http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html


Chapter 4. Approach

As pointed out by Babenko et al. [2], this mean of the center location error
could be distorted, if the tracker predicted a position close to the ground truth for
the majority of the tracking sequence, but completely lost the object on the last
few frames and outputted random values, driving the mean center location error
up and skewing the data.

Motivated by the above, Babenko et al. introduced the Precision Plot, which
shows the percentage of frames, for which the predicted object position is within
a distance threshold to the ground truth position. The distance threshold is set
to 20 pixels and in order to obtain a numerical score for the precision rating of a
tracker, the value on the curve at the threshold number is reported.

An exemplary Precision Plot with further instructions on how to read those
plots is provided in figure 4.8a.

4.6.2 The success plot

The success plot as a measurement of tracking performance has been introduced
by Wu et al. [33] in their benchmark. The metric measures the overlap between the
bounding box predicted by the tracker and the ground truth bounding box. More
formally, given the tracking bounding box bbtr and the ground truth bounding
box bbgt, the overlap score is defined as S = |bbtr∩bbgt|

|bbtr∪bbgt| , where ∩ and ∪ refer to the

intersection and the union of the region, while | � | denotes the number of pixels
in that region. The overlap score is then plotted versus its occurrence. To obtain a
numerical rating for the success score of a tracker on a tracking sequence, the area
under the curve (AUC) is reported.

An exemplary Success Plot with further instructions on how to read those plots
is provided in figure 4.8b.

4.6.3 The size error

As a final metric, specifically to measure the quality of the results of the scale
estimation module, the size error is introduced in this thesis and will be used
excessively to compare the results of the different algorithms. The size error simply
refers to the area between curves, where the two curves are the size of the bounding
box predicted by the tracker (size = width × height) and the size of the ground
truth bounding box.

In order to obtain representative values, independent of the size of the bound-
ing boxes, the two curves are first normalized between 0 and 100, based on the
scale change in the ground truth. This needs to be kept in mind, because when
sequence have very little (or none) scale variation in the ground truth, due to the
normalization, the size error in the prediction can look as if it is drastically high,
when in fact the difference between the two curves is very small.

After calculating the area between the two normalized size curves, the value is
divided by the number of frames in the sequence, which functions as a way of av-
eraging over the sequence length, which ensures comparable results, independently
of the length of a tracking sequence.

44



4.6. Evaluation metrics

An exemplary size error plot with further instructions on how to read those
plots is provided in figure 4.8.

0 500 1000 1500 2000 2500 3000
Frame

0

25

50

75

100

Si
ze

Groundtruth size
Predicted size

Initial size
Size error = 49.77

(a) The size error plot of a sequence
with unsuccessfull scale estimation. The
size error is high, because the area be-
tween the ground truth size curve and
the predicted size curve is high.

100 200 300 400
Frame

0

20

40

60

80

100

Si
ze

Groundtruth size
Predicted size

Initial size
Size error = 14.35

(b) The size error plot of a sequence
with strong scale estimation results.
The size error is low, because the area
between the ground truth size curve and
the predicted size curve is low.

Figure 4.8: Two examplary size plots. The orange line shows the size predicted by
the tracker. The indigo line shows the ground truth size. The horizontal, dotted
line indicates the starting size of the object at the initial frame. The area between
the curves is in yellow. The area between the curves is reported as size error.

45



Chapter 4. Approach

46



Chapter 5

Evaluation and analysis

To measure the performance of the individual approaches described and imple-
mented, a set of experiments has been conducted. Firstly, a parameter optimiza-
tion has been executed based on the TB100 training subset. Based on the results
from the optimization, the ideal tracking configurations have been used to validate
the implementation of the DSST algorithm against the reference implementation.
Additionally, the different algorithms have been tested on the complete TB100 and
NICO dataset, while a final analysis has been conducted exploring the quality of
the results with consideration of realistic constraints.

5.1 Parameter optimization

A parameter optimization experiment has been conducted, with the goal of finding
the best performing parameter configuration for each approach. As the implemen-
tation of the dynamic versions of the candidates and DSST algorithms essentially
applies the static versions of the algorithms twice (once one the x and y axis),
the simplifying assumption has been made that ideal parameter settings for the
dynamic versions of the algorithms are the same as the ideal parameter settings
for the static versions. The scale estimation module has been configured to use the
Max update strategy because this is the most basic update strategy.

For each approach, a baseline parameter configuration has been defined, which
remains the same across the optimization runs, except for the one parameter that
is optimized at a time. Like this, the effect of only changing one parameter value
from the baseline configuration can be observed in the results of the parameter
optimization. In order to find the best performing set of parameter values for each
algorithm, a set of values has been generated for each individual parameter in each
approach. The set of values for a parameter has been generated by taking the value
of the parameter in the baseline configuration and defining a step function that
exponentially modifies the base value. This covers the space close to the base value
in detail, while values further away from the base value are explored at a greater
interval.

To even out the fact that the predicted position for each frame is not determin-

47



Chapter 5. Evaluation and analysis

istic in the HIOB framework, the entire parameter optimization has been executed
twice, and the average values are reported. This has been deemed necessary be-
cause the DSST algorithm is strongly dependent on the predicted position, which
is used to extract samples in the scale domain.

Finally, the best performing values for each parameter are selected to obtain the
final configuration for each specific approach. The focus during the selection of the
best parameter values lay primarily on the success metric, while the frame rate of
the parameter values has also been considered, which measures the computational
load of a specific parameter value. However, there were no cases where the frame
rate was the deciding factor because whenever the frame rate changed significantly
depending on the parameter value, the parameter value that maximized the success
metric was in accordance with a high frame rate. A good example of this is the
optimization of the DSST parameter Hog cell size, which can be inspected in
Figure 5.1d, where the best parameter value (as measured by success) does not
have the highest frame rate but is very close to the parameter values that reaches
the highest frame rate.

To avoid confusion about the two frame rates that are reported: The general
frame rate measures the overall frame rate of the entire HIOB tracking framework
(which is the sum of all frame rates of the isolated modules involved in the tracking
process). The second SE frame rate specifically measures at which frame rate the
isolated SE module is running. Thus, the SE module only contributes a small part
to the combined computational load of all the modules involved in the tracking
process, which explains why a high SE frame rate does not correlate with a high
overall frame rate.

The parameter optimization has been executed on the TB100 training subset,
on a machine with the following hardware components: 32 GiB RAM, Intel Core
i7-4930K at 3.40GHz CPU, two Geforce GTX 1080 GPUs with 8112 MiB video
RAM.

5.1.1 DSST optimization: Parameter settings

With an exception to the hog cell size parameter, the values from the paper by
Danelljan et al. have been used for the baseline parameter configuration [9], from
which one parameter is varied during the optimization. The following parameters
have been optimized:

• Number scales : This parameter controls the number of samples that are ex-
tracted at different scale levels. The baseline parameter value used in the
optimization of the other parameters was set to 33.

• Scale sigma: This parameter controls the standard deviation (i.e. the sharp-
ness) of the desired Gaussian correlation filter output, depending on the
Number scales parameter value. The baseline parameter value used in the
optimization of the other parameters was set to 0.25.

48



5.1. Parameter optimization

• Learning rate: This parameter controls how quickly the impact of old frames
on the scale model decays over time. The baseline parameter value used in
the optimization of the other parameters was set to 0.025.

• Hog cell size: This parameter controls the size of each cell in the hog feature
extraction algorithm. The block normalization size is adapted to always nor-
malize over two cells, which is not displayed in the hog optimization plot. The
baseline parameter value used in the optimization of the other parameters
was set to 1× 1, which is the only value not in accordance with the original
settings by Danelljan et al, were a cell size of 4× 4 was used. [9].

• Scale factor : This parameter controls how fine-grained the scale space is
covered by setting the scale difference between the extracted patches on each
frame. The baseline parameter value used in the optimization of the other
parameters is 1.02, which is the value is that is also used in Danelljan et al.’s
original paper.

• Scale model max size: This parameter limits the pixel size an object is initially
allowed to have, the value refers to the product of the x and y axis. If an object
is bigger than the allowed size on the initial frame, a new size is calculated
preserving the aspect ratio of the object, to which the object is then resized.
The object representation on the following frames are then always adjusted
by the same factor. The baseline parameter value used in the optimization
of the other parameters is 512, which is the value is that is also used in
Danelljan et al.’s original paper.

5.1.2 DSST optimization: Results

Figure 5.1 show the results obtained from the optimization of the parameter opti-
mization of the DSST algorithm. The following values for the different parameters
achieved the best results, measured by the success metric.

• Number scales: 17

• Scale sigma factor: 0.75

• Learning rate: 0.01

• Hog cell size: 4× 4

• Scale factor between patches: 1.01

• Scale model max size: 373

The most impactful parameter value is the value of the number scales param-
eter. Extracting only 17 scale patches with a factor of 1.01 between them means,
that only 8% of the scale space around the object at scale 1 is covered. In other
words, the smallest extracted patch has been scaled by a factor of 0.92, while the

49



Chapter 5. Evaluation and analysis

biggest extract patch has been scaled by a factor of 1.08 when 17 patches are ex-
tracted. This is a big difference to having 33 scale samples with a factor of 1.02
between them, as in this case 32% of the scale space around the object at scale 1
is covered. While it is very unlikely that any object recorded at a smooth frame
rate would shrink or increase its size by 32% between two frames, a value of 17
for the number of scale samples is alarming for a different reason. Each scale sam-
ple consists of a number of extracted and resized images patches, as described in
section 4.3. The feature vector of each extracted patch then gets multiplied by
a Hann window, which punishes extracted samples more, that are further away
from the center. In other words, images patches that are extracted at scale levels
that diverge further from 1 are more and more punished, where the image patches
extracted at the outmost scale factors are reduced to zero. This is done to stabilize
the output of the correlation filter [3].

The stabilizing Hann window1 is not of static size, it also depends on the
number of scale samples that the DSST algorithm extracts, so that the utmost
scale factor patches are always reduced to zero. This means that when there are
fewer samples, to begin with, the punishment curve is a lot steeper. To give an
extreme example, if the number of samples parameter were to be set to 5, there
would only be two smaller and two bigger scale samples. The multiplication with
the Hann window would punish the outmost samples to be exactly zero, the middle
samples to exactly the half of their original score, while the sample in the middle
(at scale factor 1), would not be punished at all.

When 17 image patches are extracted, the Hann window is stretched over 8
patches in each direction, but still, the punishing effect on even the samples directly
neighboring the patch at scale factor 1 is drastic. This punishment in combination
with a scale factor between the patches of only 1.01 (which means that the features
of direct neighbors are likely to not be vastly different) has such a strong impact,
that the DSST algorithm always predicts a scale factor of one, i.e. never changes
the size. Said differently, the parameter optimization produced a configuration,
that is equivalent to not running the scale estimation algorithm at all because it
forces the algorithm to always produce a scale factor of one.

To eliminate the possibility that this is behavior only present in the HIOB DSST
implementation, the parameter configuration has been tested in the DSST reference
implementation provided by Danelljan et al., where the same phenomenon has been
observed.

While there are multiple conclusions that could be drawn from this finding, it is
likely that different ideal parameter values would have been obtained if the different
parameters would not have been optimized independently from one another. A
different conclusion would be that while the algorithm can achieve good scale
estimation results, it also introduces too much inconsistency, cause overall worse
average. However, a final evaluation and analysis of the algorithm is due later in

1You can think of a Hann window like a bell curve, with its maximum point at one, so that
multiplication with a Hann window leaves the center value unchanged, but reduces the outer
values.

50



5.1. Parameter optimization

this chapter and will be postponed for now.
As a consequence of the discovery that the ideal parameter configuration causes

the DSST algorithm to never change the scale, the parameter configuration is
discarded and the values proposed by Danelljan et al. in the original paper are
used for the following experiments. This is done because there are now meaningful
conclusions that could be drawn regarding the DSST algorithm if it were to be used
but could never actually change the scale factor of the object during tracking.

5.1.3 Scaled candidates: Parameter settings

For the optimization of the Scale candidates algorithm, a baseline configuration
has been used with relatively neutral parameter settings. The following parameters
were optimized, note that the Max update strategy and the static version of the
algorithm were used for this algorithm, as in the DSST optimization:

• Number scales : This parameter controls the number of candidates that are
generated at different scale levels. The baseline parameter value used in the
optimization of the other parameters is 33.

• Scale factor between candidates : This parameter controls how fine-grained
the scale space is covered by setting the scale difference between the gen-
erated candidates on one frame. The baseline parameter value used in the
optimization of the other parameters is 1.01.

• Inner punish threshold : This parameter controls when candidates are pun-
ished for containing bad likelihood values for pixels belonging to the object.
The baseline parameter value used in the optimization of the other parame-
ters is 0.5.

• Outer punish threshold : This parameter controls when candidates are pun-
ished for not containing good likelihood values for pixels belonging to the
object. The baseline parameter value used in the optimization of the other
parameters is 0.5.

• Max scale difference: This parameter controls how much the scale is allowed
to change between two frames. If the scale change is bigger than allowed by
the parameter, the candidates is selected that is closest to the allowed scale
difference. The baseline parameter value used in the optimization of the other
parameters is 0.01.

• Scale window step size: This parameter controls how much the rating of a
candidate is punished based on its divergence to the unchanged scale. Thus,
candidates generated at the outer extreme scale levels are punished by a
lot, while candidates generated close to the original scale are only slightly
punished. The baseline parameter value used in the optimization of the other
parameters is 0.005.

51



Chapter 5. Evaluation and analysis

17 25 29 31 33 35 37 41 49 65
0.0

0.2

0.4

0.6

0.8

1.0
Sc

or
es

Avg. Success
Avg. Precision

Number samples
17 25 29 31 33 35 37 41 49 65

0

10

20

30

40

50

60

Fr
am

e-
ra

te

Avg. SE Frame-rate
Avg. Frame-rate

Number samples

(a) The average metric scores and the average impact on the computational
load of the values of the number samples parameter. The best performing value
is 17.0, with an average success rating of 0.437 and an overall tracking frame
rate of 6.699.

0.0
7

0.1
7

0.2
3

0.2
5

0.2
7

0.3
3

0.4
3

0.5
7

0.7
5

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

es

Avg. Success
Avg. Precision

Scale sigma
0.0

7
0.1

7
0.2

3
0.2

5
0.2

7
0.3

3
0.4

3
0.5

7
0.7

5
0

10

20

30

40

50

60
Fr

am
e-

ra
te

Avg. SE Frame-rate
Avg. Frame-rate

Scale sigma

(b) The average metric scores and the average impact on the computational
load of the values of the scale sigma parameter. The best performing value is
0.75, with an average success rating of 0.427 and an overall tracking frame rate
of 5.91.

0.0
1

0.0
3

0.0
5

0.0
7

0.0
9

0.1
11

0.1
32

0.1
54

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

es

Avg. Success
Avg. Precision

Learning rate
0.0

1
0.0

3
0.0

5
0.0

7
0.0

9
0.1

11
0.1

32
0.1

54
0

10

20

30

40

50

60

Fr
am

e-
ra

te

Avg. SE Frame-rate
Avg. Frame-rate

Learning rate

(c) The average metric scores and the average impact on the computational
load of the values of the learning rate parameter. The best performing value is
0.01, with an average success rating of 0.407 and an overall tracking frame rate
of 5.735.

Figure 5.1: Results from the DSST parameter optimization.
52



5.1. Parameter optimization

1 2 4 80.0

0.2

0.4

0.6

0.8

1.0
Sc

or
es

Avg. Success
Avg. Precision

Hog cell size
1 2 4 80

10

20

30

40

50

60

Fr
am

e-
ra

te

Avg. SE Frame-rate
Avg. Frame-rate

Hog cell size

(d) The average metric scores and the average impact on the computational
load of the values of the hog cell size parameter. The best performing value is
4.0, with an average success rating of 0.44 and an overall tracking frame rate of
5.847.

1.0
1

1.0
2

1.0
3

1.0
4

1.0
5

1.0
6

1.0
7

1.0
8

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

es

Avg. Success
Avg. Precision

Scale factor
1.0

1
1.0

2
1.0

3
1.0

4
1.0

5
1.0

6
1.0

7
1.0

8
0

10

20

30

40

50

60
Fr

am
e-

ra
te

Avg. SE Frame-rate
Avg. Frame-rate

Scale factor

(e) The average metric scores and the average impact on the computational
load of the values of the scale factor parameter. The best performing value is
1.01, with an average success rating of 0.427 and an overall tracking frame rate
of 6.042.

30
2

33
5

37
3

41
4

46
0

51
2

56
3

61
9

68
1

74
9

82
4

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

es

Avg. Success
Avg. Precision

Max scale model size
30

2
33

5
37

3
41

4
46

0
51

2
56

3
61

9
68

1
74

9
82

4
0

10

20

30

40

50

60

Fr
am

e-
ra

te

Avg. SE Frame-rate
Avg. Frame-rate

Max scale model size

(f) The average metric scores and the average impact on the computational load
of the values of the scale model max parameter. The best performing value is
373, with an average success rating of 0.427 and an overall tracking frame rate
of 5.899.

Figure 5.1: Results from the DSST parameter optimization (continued).
53



Chapter 5. Evaluation and analysis

20 40 60 80 100 120 140
Frame

0

20

40

60

80

100
Si

ze

Groundtruth size
Predicted size

Initial size
Size error = 35.69

(a) The plotted size score of the can-
didates static approach on the TB100
sequence Couple.

50 100 150 200 250 300
Frame

0

20

40

60

80

100

Si
ze

Groundtruth size
Predicted size

Initial size
Size error = 14.12

(b) The plotted size score of the can-
didates static approach on the TB100
sequence Human9.

Figure 5.2: Comparision between sequences where the object shrinks and where the
object grows, using the parameter configuration obtained from the optimization.

5.1.4 Scaled candidates optimization: Results

The results of the parameter optimization of the static candidates algorithm pro-
duce the following configuration:

• Number scales: 17

• Scale factor between patches: 1.01

• Inner punish threshold: 0.4

• Outer punish threshold: 0.45

• Max scale difference:

• Scale window step size: 0.2

The most impactful parameters for this algorithm are the in-
ner punish threhsold and outer punish threshold parameters, as they control
under which conditions candidates are punished, thus increase or decrease the
size of the final, scaled candidate. Inspecting exemplary results of the algorithm
with the above parameter configuration revealed, that with an inner punishment
threshold of 0.4 and an outer punishment threshold of 0.45, the algorithm achieved
acceptable results on sequences where the object was gradually decreasing in
size. The opposite case, where the object was gradually increasing in size, showed
consistently bad results. The scale estimation algorithm would either not react
to an increase in the size of the object and maintain a bounding box close to
the initial size, or it would even produce a smaller bounding box. Exemplary
size plots of such sequences are provided in Figure 5.2, which can be considered

54



5.2. Validation of the DSST algorithm

representative for similar sequences. For the vast majority of sequences, an initial
drop in size score could be observed, which further indicates that this parameter
configuration might not be as ideal as it could be expected from the optimization.

The behavior in Figure 5.2 is likely to be caused by the values assigned to the
inner and outer punish threshold. The values for the parameters have been opti-
mized independently from one another, this means that the optimized parameter
configuration does not necessarily contain the ideal parameter combination, instead
it contains the collection of individual parameter values that achieved the highest
score, when the other parameters had the values from the optimization baseline.
Meaning that the best performing value for the inner punish threshold parameter
was obtained when the outer punish threshold had a value of 0.5, just from the
parameter optimization alone, nothing could be said regarding the performance of
the actual combination of the parameter values.

5.2 Validation of the DSST algorithm

To ensure that the DSST algorithm by Danelljan et al. [9] has been implemented
properly, the baseline version of the algorithm (i.e. without modifications regarding
the aspect ratio) as implemented in the HIOB framework has been executed on
the TB100 test set. As the quality of the output of the DSST algorithm is strongly
sensitive to the positional prediction input, which is not deterministic in the HIOB
framework, the experiment has been executed 10 times and the average values are
reported. Like this, more robust and characteristic results can be obtained, which
make for a fairer comparison between the reference implementation and the HIOB
implementation. The comparison of the DSST reference implementation and the
DSST implementation in HIOB is visualized in figure Figure 5.4, while the detailed
sequence-wise results, are provided in the tables Table 5.1 and Table 5.2.

0 10 20 30 40 50
center distance [pixels]

0.0

0.2

0.4

0.6

0.8

1.0

oc
cu

rre
nc

e

DSST reference vs implementation

0.69 DSST reference
0.643 DSST static continuous

(a) The precision plot.

0.0 0.2 0.4 0.6 0.8 1.0
overlap score

0.0

0.2

0.4

0.6

0.8

1.0

oc
cu

rre
nc

e

DSST reference vs implementation

0.497 DSST reference
0.427 DSST static continuous

(b) The success plot.

Figure 5.4: The plotted results of the DSST reference implementation from Danell-
jan et al. versus the static continuous DSST implementation in the HIOB frame-
work.

55



Chapter 5. Evaluation and analysis

17 25 29 31 33 35 37 41 49 65
0.0

0.2

0.4

0.6

0.8

1.0
Sc

or
es

Avg. Success
Avg. Precision

Number candidates

200

400

SE
 fr

am
e 

ra
te

Avg. SE frame rate
Avg. frame rate

17 25 29 31 33 35 37 41 49 65

8

10

Fr
am

e 
ra

te

Number candidates

(a) The average metric scores and the average impact on the computational load
of the values of the number candidates parameter. The best performing value is
17.0, with an average success rating of 0.348 and an overall tracking frame-rate
of 9.075.

1.0
1

1.0
2

1.0
3

1.0
4

1.0
5

1.0
6

1.0
7

1.0
8

1.0
9 1.1 1.1

1
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

es

Avg. Success
Avg. Precision

Scale factor

350
400
450

SE
 fr

am
e 

ra
te

Avg. SE frame rate
Avg. frame rate

1.0
1

1.0
2

1.0
3

1.0
4

1.0
5

1.0
6

1.0
7

1.0
8

1.0
9 1.1 1.1

1

9

10

Fr
am

e 
ra

te

Scale factor

(b) The average metric scores and the average impact on the computational
load of the values of the scale factor parameter. The best performing value is
1.01, with an average success rating of 0.391 and an overall tracking frame rate
of 9.051.

0.0
1

0.0
3

0.0
5

0.0
7

0.0
9

0.1
1

0.1
4

0.1
6

0.1
8

0.2
1

0.2
3

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

es

Avg. Success
Avg. Precision

Limit scale difference

350

400

450

SE
 fr

am
e 

ra
te

Avg. SE frame rate
Avg. frame rate

0.0
1

0.0
3

0.0
5

0.0
7

0.0
9

0.1
1

0.1
4

0.1
6

0.1
8

0.2
1

0.2
3

8

9

Fr
am

e 
ra

te

Limit scale difference

(c) The average metric scores and the average impact on the computational load
of the values of the limit scale difference parameter. The best performing value
is 0.01, with an average success rating of 0.365 and an overall tracking frame
rate of 9.113.

Figure 5.3: Results from the Scaled candidates parameter optimization.
56



5.2. Validation of the DSST algorithm

0.2
2

0.2
8

0.3
4 0.4 0.4

5 0.5 0.5
5 0.6 0.6

6
0.7

2
0.7

8
0.0

0.2

0.4

0.6

0.8

1.0
Sc

or
es

Avg. Success
Avg. Precision

Inner punish threshold

400

450

SE
 fr

am
e 

ra
te

Avg. SE frame rate
Avg. frame rate

0.2
2

0.2
8

0.3
4 0.4 0.4

5 0.5 0.5
5 0.6 0.6

6
0.7

2
0.7

8

8

10

Fr
am

e 
ra

te

Inner punish threshold

(d) The average metric scores and the average impact on the computational load
of the values of the inner punish threshold parameter. The best performing value
is 0.4, with an average success rating of 0.453 and an overall tracking frame rate
of 8.709.

0.2
2

0.2
8

0.3
4 0.4 0.4

5 0.5 0.5
5 0.6 0.6

6
0.7

2
0.7

8
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

es

Avg. Success
Avg. Precision

Outer punish threshold

400

450
SE

 fr
am

e 
ra

te

Avg. SE frame rate
Avg. frame rate

0.2
2

0.2
8

0.3
4 0.4 0.4

5 0.5 0.5
5 0.6 0.6

6
0.7

2
0.7

8
8

9

10

Fr
am

e 
ra

te

Outer punish threshold

(e) The average metric scores and the average impact on the computational load
of the values of the outer punish threshold parameter. The best performing value
is 0.45, with an average success rating of 0.453 and an overall tracking frame
rate of 8.82.

0.0
05

0.0
25

0.0
45

0.0
66

0.0
87

0.1
09

0.1
31

0.1
54

0.1
77 0.2

0.2
24

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

es

Avg. Success
Avg. Precision

Scale window steps

375
400
425

SE
 fr

am
e 

ra
te

Avg. SE frame rate
Avg. frame rate

0.0
05

0.0
25

0.0
45

0.0
66

0.0
87

0.1
09

0.1
31

0.1
54

0.1
77 0.2

0.2
24

8.5

9.0

9.5

Fr
am

e 
ra

te

Scale window steps

(f) The average metric scores and the average impact on the computational load
of the values of the scale window step parameter. The best performing value is
0.2, with an average success rating of 0.402 and an overall tracking frame rate
of 9.069.

Figure 5.3: Results from the Scaled candidates parameter optimization (continued).
57



Chapter 5. Evaluation and analysis

Sample Frames Precision Success Size Score

Basketball 725 0.903 0.552 20.32

Biker 142 0.444 0.266 27.13

Bird1 408 0.245 0.116 23.01

Bird2 99 0.545 0.6 8.88

BlurFace 493 1.0 0.895 14.29

Box 1161 0.369 0.337 25.76

Car1 1020 1.0 0.601 7.28

ClifBar 472 0.936 0.61 8.74

Crowds 347 1.0 0.748 7.11

David 471 1.0 0.797 5.98

Deer 71 0.789 0.602 17.92

Diving 215 0.228 0.198 23.65

DragonBaby 113 0.062 0.057 25.63

Dudek 1145 0.738 0.773 8.29

Freeman3 460 0.746 0.333 25.97

Liquor 1741 0.406 0.396 10.67

Panda 1000 0.214 0.122 11.7

RedTeam 1918 0.994 0.539 19.04

Singer2 366 0.915 0.751 10.1

Soccer 392 0.699 0.472 10.86

Table 5.1: The results of the DSST tracker by Danelljan et al. on the TB100
training subset.

Fig. 5.4 shows a considerable difference in both the achieved success rating
and precision rating between the DSST reference version and the version as im-
plemented in HIOB. To understand why the different implementations achieve
different results, Table 5.2 and Table 5.1 need to be considered, which show the
detailed results of the different algorithms for each sequence in the TB100 training
subset.

For the most part of this thesis, the precision metric is not of primary interest,
because it measures the center distance between two bounding boxes, which is not
directly affected by scale estimation. However, when a sequence has a low precision
rating, the likelihood is high, that the tracker at some point lost the object. Even
though precision is only of secondary interest, there is still an obvious interaction
between precision and success, as the overlap between two bounding boxes is af-
fected by the distance between them. This means, that for a fair comparison of
the two DSST implementations, sequences should be considered that have a sim-

58



5.2. Validation of the DSST algorithm

Sample Frames Precision Success Size Score

Basketball 725 0.354 0.196 438.837

Biker 142 0.88 0.499 30.211

Bird1 408 0.675 0.353 18.015

Bird2 99 0.974 0.678 35.688

BlurFace 493 0.371 0.496 44.959

Box 1161 0.558 0.481 32.703

Car1 1020 0.556 0.189 26.269

ClifBar 472 0.518 0.324 11.221

Crowds 347 0.999 0.643 28.645

David 471 0.991 0.669 10.49

Deer 71 0.777 0.574 67.827

Diving 215 0.244 0.123 47.058

DragonBaby 113 0.807 0.573 14.372

Dudek 1145 0.53 0.685 14.921

Freeman3 460 1.0 0.349 25.834

Liquor 1741 0.397 0.356 46.989

Panda 1000 1.0 0.593 12.643

RedTeam 1918 0.992 0.487 21.835

Singer2 366 0.045 0.065 55.651

Soccer 392 0.299 0.225 27.147

Table 5.2: The results of the HIOB tracker using the DSST static continuous scale
estimation approach on the TB100 training subset.

ilar precision rating in booth trackers. As an extreme example, the DSST tracker
achieves a very high precision rating on the sequence Singer2, while also having
a high success rating and a low size score on the same sequence. Contrary, the
HIOB tracker achieves a drastically low precision rating in the Singer2 sequence,
which is in correspondence with a low rating in success and a high size score. Thus,
using such a sequence to validate or invalidate the correct implementation of the
algorithm would not be fair.

An opposing example is the sequence David, where both the DSST and the
HIOB tracker achieve high precision and success ratings, while the achieved size
score is for both trackers on the lower end, indicating good performance of the
scale estimation algorithm. Figure 5.5 shows the plotted results if the size score
of both trackers. Two things can be deducted from the comparison of the two
plots. Firstly, both implementations achieve good results in estimating the scale
of the object throughout the tracking sequence. Secondly, the DSST tracker a

59



Chapter 5. Evaluation and analysis

100 200 300 400
Frame

0

20

40

60

80

100
Si

ze

Groundtruth size
Predicted size

Initial size
Size error = 5.98

(a) The plotted size score of the DSST
tracker by Danelljan et al.

100 200 300 400
Frame

0

20

40

60

80

100

Si
ze

Groundtruth size
Predicted size

Initial size
Size error = 8.87

(b) The plotted size score of the HIOB
tracker using the implemented scale es-
timation DSST algorithm.

Figure 5.5: Comparrison of the size score between the DSST reference implemen-
tation by Danelljan et al. and the implementation in HIOB on the sequence David
from the TB100 training subset.

achieves a slightly more accurate approximation of the actual ground truth scale
than the HIOB implementation of the DSST scale estimation algorithm. It can not
be said with absolute certainty what causes that behavior, but it is likely that the
problem lies within the HOG descriptor because different implementations have
been used. In the DSST tracker, the fast HOG implementation by Piotr Dollár
is used (which is not available in Python) which implements HOG based as on
the work of Felzenszwalb et al [10, 13]. In the HIOB implementation, the standard
HOG descriptor provided by the OpenCV2 library is used, which implements HOG
as described by Dalal et al. [10, 6]. As the HOG descriptor is run on every frame,
the different HOG descriptors could explain why the DSST tracker achieves overall
more accurate scale estimation results compared to the HIOB implementation of
the DSST scale estimation algorithm.

While it has been shown that the HIOB implementation of the DSST scale es-
timation algorithm can achieve similarly good results (given comparable precision
ratings) as the DSST tracker, cases should also be considered where the precision
rating of the sequence is still acceptably high, but the success rating is low, in-
dicating bad results from the scale estimation algorithm. This is the case for the
sequence Car1, where the DSST tracker achieves strong results on the precision,
success and size score metric, while the HIOB tracker with the DSST scale estima-
tion implementation achieves overall worse results, with a drastically low success
rating. To understand cases like this, a slightly more in depth statistical analysis of
the 10 validation executions of the HIOB tracker has been conducted, by detecting
outlier values in the precision and size score ratings, as visualized in Figure 5.6.
The boxplot of the size score of the Car1 sequence shows generally low size scores
and one outlier, which was not visible from only studying the average value over

60



5.2. Validation of the DSST algorithm

(a) The precision ratings of the se-
quences over the 10 validation execu-
tions of the HIOB tracker visualized
with boxplots.

(b) The size errors of the sequences
over the 10 validation executions of the
HIOB tracker visualized with boxplots.

Figure 5.6: Boxplot visualization of the size error and the precision ratings of the 10
validation executions of the HIOB tracker for each sequence. The Boxplots show
the median, first and third quantiles and outliers. The sequence Basketball has
been excluded from the plots for better overview.

the 10 executions. This can be observed in Figure 5.7, which shows the outlier
size plot compared to an average successfully size plot for the sequence Car1. This
example also shows how sensible the algorithm is towards the predicted position,
which is the main input to the algorithm on each frame. It is noteworthy that no
outlier occurred in the precision ratings for the Car1 sequence, however, the box-
plot shows a wide distribution of precision values. This means that the outlier size
plot cannot be explained by bad translational predictions alone. Similar outliers
can be observed in the boxplots of the sequences Liquor, Box, Blurface and Deer,
which skewing the reported averages of the size scores in Table 5.2.

The sequence Freeman3 shows similar characteristics as the Car1 sequence,
that is having a high precision but low success rating, and a relatively high size
score. However, this is the case in both the DSST tracker and the HIOB tracker,
which allows the conclusion that the Freeman3 sequence has some characteristic
that is challenging for the DSST scale estimation algorithm, independently of the
tracking framework. In fact, the initially low resolution of the target cannot be
well described with HOG, which explains the poor performance.

To conclude this section, the DSST tracker and the HIOB tracker with the
DSST scale estimation implementation achieve similarly good results when the
precision ratings are also similar, which can be seen seen on sequences like Biker,
Cliffbar, David, Dudek or Readteam, while Danelljan et al.s DSST tracker achieves
generally slightly better size score, which is likely to be caused by the different HOG
descriptor implementations.

61



Chapter 5. Evaluation and analysis

0 200 400 600 800 1000
Frame

0

20

40

60

80

100
Si

ze

Groundtruth size
Predicted size

Initial size
Size error = 3.18

(a) The size error of a good execution.

0 200 400 600 800 1000
Frame

0

200

400

Si
ze

Groundtruth size
Predicted size

Initial size
Size error = 111.67

(b) The size error of the outlier execu-
tion.

Figure 5.7: Sizes cores from different execution of the 10 validation executions,
showing how the different predicted positions can affect the outcome of the algo-
rithm.

5.3 Performance on the TB100 dataset

This experiment aims at exploring the results the different algorithms achieve on
the diverse TB100 dataset.

In total, there are eight different algorithm versions and a baseline, where the SE
module has been disabled. The eight different algorithm versions are the product
of the main two algorithms (Candidates and DSST) which both have a static and
dynamic aspect ratio implementation, and the two, SE specific update strategies
Max and CWS. To avoid confusion regarding the update strategies: The HIOB
tracker is configured to always use the HGC update strategy, as the update strategy
achieved the best results in the work of Springübe and in the work of Heinrich et
al. [30, 17]. As explained in section 4.4, the update strategies used in this thesis
only control when the SE module is executed, instead of controlling the model
update behavior of the entire tracker. This enables a continuous calculation and
adjustment of the scale, and once the HIOB updater HIOBs internal representation
of the model, the scaled representation is learned.

The different algorithm versions have been executed on the complete TB100
dataset. As the TB100 features a very diverse set of sequences, the results of the
algorithms on the TB100 represent rather general performance, instead of domain-
specific performance, as explored on the NICO dataset.

The results of the algorithms on the TB100 dataset are visualized in Figure 5.8,
showing results of the precision and success plots of each algorithm. The results
of the versions of the DSST and Scaled candidates algorithms that achieved the
highest success scores are in greater details shown in Table 5.3. The HIOB tracker
without the use of the SE module is provided as the baseline.

62



5.3. Performance on the TB100 dataset

0 10 20 30 40 50
center distance [pixels]

0.0

0.2

0.4

0.6

0.8

1.0

oc
cu

rre
nc

e

0.703 Candidates stat. max
0.688 Candidates stat. CWS
0.73 Candidates dyn. max
0.71 Candidates dyn. CWS
0.67 No SE (HGC)

0.704 DSST stat. max
0.695 DSST stat. CWS
0.733 DSST dyn. max
0.669 DSST dyn. CWS

(a) The precision plots of the two algorithms and their variations
on the TB100 dataset with adjusted center distance threshold.

0.0 0.2 0.4 0.6 0.8 1.0
overlap score

0.0

0.2

0.4

0.6

0.8

1.0

oc
cu

rre
nc

e

0.442 Candidates stat. max
0.463 Candidates stat. CWS
0.473 Candidates dyn. max
0.481 Candidates dyn. CWS
0.466 No SE (HGC)

0.483 DSST stat. max
0.476 DSST stat. CWS
0.497 DSST dyn. max
0.467 DSST dyn. CWS

(b) The success plot of the two algorithms and their variations
on the TB100 dataset. The DSST algorithm achieves best re-
sults with the Full update strategy and the dynamic aspect ratio
implementation. The Candidates algorithm achieves best results
with the HGC update strategy and the dynamic aspect ration
implementation.

Figure 5.8: The plotted results of the different algorithms on the TB100 dataset.
Both algorithms use the parameter configuration that allows the scale to be
changed.

63



Chapter 5. Evaluation and analysis

Algorithm No SE (HGC) Candidates dyn. CWS DSST dyn. max

Attribute Precision Success Size Precision Success Size Precision Success Size

IV 0.668 0.466 30.713 0.695 0.484 30.934 0.711 0.485 31.909

SV 0.622 0.415 31.254 0.642 0.423 31.089 0.672 0.443 29.267

OCC 0.598 0.428 23.891 0.639 0.454 24.503 0.637 0.443 33.801

DEF 0.620 0.428 25.696 0.663 0.45 26.736 0.650 0.442 33.855

MB 0.541 0.446 25.020 0.569 0.472 25.224 0.561 0.438 30.574

FM 0.599 0.467 22.183 0.613 0.476 22.637 0.599 0.448 29.047

IPR 0.688 0.482 23.567 0.708 0.494 23.937 0.724 0.493 29.981

OPR 0.678 0.467 24.883 0.700 0.481 25.488 0.723 0.483 28.558

OV 0.538 0.404 17.507 0.608 0.438 18.871 0.585 0.428 29.259

BC 0.613 0.437 26.332 0.696 0.475 26.587 0.662 0.446 29.585

LR 0.815 0.389 32.836 0.774 0.377 32.308 0.869 0.433 22.337

All 0.67 0.466 26.672 0.71 0.481 27.286 0.733 0.497 32.032

Table 5.3: The results on the TB100 of the best performing algorithm versions in
comparison to the HIOB baseline without the SE module.

Considering Figure 5.8, it is apparent, that the results of the two algorithms are
only slightly better than the baseline HIOB tracker, which employs no SE module
and uses the HGC update strategy. The HIOB baseline achieves a total success
rating of 0.466 on the complete TB100 dataset, while the best performing version
of the Candidates algorithm achieves a total success rating of 0.478 and the best
performing Version of the DSST algorithm achieves a success rating of 0.497.

It also needs to be addressed, that for this experiment, each algorithm has only
been executed on the dataset once (contrary to the DSST validation experiment,
where the results were reported based on the average values of 10 separate). This
means, that the achieved results are likely to be influenced by the slightly different
translational predictions of the HIOB tracker, which can have a drastic impact
on the performance of the DSST algorithm, as it has been shown in Figure 5.7.
The Candidates algorithm is expected to be less sensitive towards slightly different
translational predictions because it depends on HIOBs feature map, which is at a
low resolution due to the pooling layers in the CNN.

Table 5.3 reveals interesting relations between the performance of the different
algorithms on the different attributes of the TB100 dataset. Most notably is, that
the No SE baseline condition actually has the lowest average size score compared to
best performing versions of Candidates and DSST algorithms. This means, that the
average predicted scale of the HIOB baseline was closer to the ground truth scale
of the object than the predicted scales of the SE module was close to the ground
truth scale of the object. This can be explained by the following observations.
Firstly, in the TB100 exist a lot of sequences in which the ground truth bounding
box never changes its size. On such sequences, the No SE HIOB baseline achieves
the best size score possible, because the size is equal to the initial size of the object
throughout the entire sequence. On such sequences, the slightest errors of the SE

64



5.3. Performance on the TB100 dataset

0 200 400 600
Frame

96

98

100

102

104

Si
ze

Groundtruth size
Predicted size

Initial size
Size error = 0.0

(a) An unrealistic size plot where
the ground truth bounding box never
changes it size and thus, the No SE con-
dition achieveing a perfect size score rat-
ing.

0 200 400 600
Frame

70

80

90

100

Si
ze

Groundtruth size
Predicted size

Initial size
Size error = 14.75

(b) The size plot of the DSST algorithm
with dynamic aspect ration implemen-
tation and the Max update strategy,
which achieves a worse size score.

Figure 5.9: The size plots of the TB100 Basketball sequence, where the ground
truth bounding box never changes its size.

module immediately result in worse performance compared to not updating the
size. An example of this scenario where the HIOB baseline without the SE module
has an unfair advantage against the SE algorithms is visualized in Figure 5.9.

Additionally, in their current state, both SE algorithms are not flawless, mean-
ing that there are sequences where they will fail. This failing under certain condi-
tions (like no ideal predicted position), in combination with the ideal size scores
achieved by the HIOB baseline on other specific sequences, are likely to outweigh
the cases in which the SE module achieves strong results at estimating the scale.

Further, the TB100 attribute of special interest is the Scale Variation (SV) at-
tribute. Table 5.3 shows very similar success ratings for the No SE baseline and the
Candidates algorithm, while the DSST algorithm achieves a higher success rating
when only the sequences that have the SV attribute are taken into consideration.
This almost identical success rating of the baseline and the Candidates approach
can be explained by the update strategy of the Candidates algorithm and the
parameter configuration from the optimization. The update strategy of the best
performing Candidates version is CWS, meaning that the scale is only updated on
specific frames, but at least once every 20 frames. The update strategy in combi-
nation with the relatively high value of 0.2 for the Scale window step size results
in a setting, in which the algorithm depends on very strong indications on the pre-
diction map, as otherwise, the punishment of the divergence to the unchanged size
will outweigh a candidate that achieves only slight improvements. Thus, the algo-
rithm punishes scale change a lot on the frames in which the algorithm is actually
executed, resulting in a greatly decreased likelihood for the algorithm to change
the scale. This means that the high values of the Candidates algorithm with the
CWS update strategy are likely to be the product of not changing the scale to the

65



Chapter 5. Evaluation and analysis

worse on bad frames instead of changing the scale for the better on good frames.
The DSST algorithm achieves better results than the HIOB baseline on the

SV sequence collection of the TB100, which is plausible because the algorithm’s
goal is to estimate the size during tracking. It needs to be noted that on the SV
sequence collection, the DSST algorithm condition also achieved a higher precision
rating that both the HIOB baseline and the Candidates algorithm. This means that
to some degree, better success ratings must be attributed to better translational
predictions. It should also be highlighted, that for most attributes, the DSST
algorithm has a higher size score than the HIOB baseline, which is likely to be
the result of bad result on a few sequences, which skew the average values, and
the previously described phenomenon that on some TB100 sequences, the ground
truth bounding box is of static size.

The interesting question arises, why the achieved success ratings of the DSST
algorithm are not significantly higher for at least the TB100 sequences with the
SV attribute. This is explained best with example sequences, and the question will
be answered in section 5.6.

5.4 Performance on the NICO dataset

Analyzing the results of the algorithms on the TB100 dataset revealed the perfor-
mance of the algorithms on diverse sequences. This experiment explores how the
scale estimation algorithms perform on the specialized NICO dataset. This rep-
resents a real-world robot interaction task setting. Note, that the NICO dataset
is completely recorded in high definition, contrary to the TB100, and thus the
threshold value for the precision metric has been increased from 20 pixels to 40
pixels, in accordance with Heinrich et al.’s reported results on the NICO dataset
[17].

66



5.4. Performance on the NICO dataset

0 20 40 60 80 100
center distance [pixels]

0.0

0.2

0.4

0.6

0.8

1.0

oc
cu

rre
nc

e

0.754 Candidates stat. max
0.772 Candidates stat. CWS
0.736 Candidates dyn. max
0.742 Candidates dyn. CWS
0.668 No SE (HGC)

0.74 DSST stat. max
0.754 DSST stat. CWS
0.763 DSST dyn. max
0.766 DSST dyn. CWS

(a) The precision plots of the two algorithms and their variations
on the NICO dataset with adjusted center distance threshold.

0.0 0.2 0.4 0.6 0.8 1.0
overlap score

0.0

0.2

0.4

0.6

0.8

1.0

oc
cu

rre
nc

e

0.401 Candidates stat. max
0.477 Candidates stat. CWS
0.432 Candidates dyn. max
0.5 Candidates dyn. CWS
0.481 No SE (HGC)

0.495 DSST stat. max
0.512 DSST stat. CWS
0.489 DSST dyn. max
0.514 DSST dyn. CWS

(b) The success plot of the two algorithms and their variations
on the NICO dataset. The DSST algorithm achieves best re-
sults with the HGC update strategy and the dynamic aspect
ratio implementation. The Candidates algorithm achieves best
results with HGC update strategy and the dynamic aspect ra-
tion implementation.

Figure 5.10: The plotted results of the two algorithms on the NICO dataset. Both
algorithms use the parameter configuration that allows the scale to be changed.

67



Chapter 5. Evaluation and analysis

Algorithm No SE (HGC) Candidates dyn. CWS DSST dyn. CWS

Attribute Precision Success Size Precision Success Size Precision Success Size

bright 0.591 0.54 29.859 0.607 0.549 37.073 0.607 0.561 35.978

size-change 0.416 0.426 18.484 0.462 0.437 20.312 0.484 0.463 19.218

occlusion 0.391 0.431 21.688 0.475 0.498 25.706 0.478 0.49 25.326

dark 0.546 0.525 30.957 0.588 0.54 38.529 0.616 0.556 35.635

motion-blur 0.322 0.398 29.315 0.359 0.421 31.952 0.394 0.446 29.761

part-occlusion 0.351 0.413 30.463 0.397 0.429 37.223 0.406 0.448 33.033

non-square 0.338 0.286 29.675 0.366 0.299 31.468 0.353 0.324 29.828

contrast 0.589 0.642 25.841 0.541 0.639 32.676 0.596 0.642 35.134

All 0.496 0.481 30.262 0.535 0.499 37.607 0.545 0.514 35.852

Table 5.4: The results on the NICO dataset of the best performing algorithm
versions in comparison to the HIOB baseline without the SE module.

Considering the results the different algorithms achieved on the NICO dataset,
the Candidates algorithm with the Max update strategy obtained significantly
worse results than the Candidates algorithm with the CWS update Strategy. This
is most likely because when the NICO robot interacts with an object, it occludes
the object with its hand, which causes the Candidates algorithm, when executed
on every frame, to adjust to the occluded object by decreasing the size to the
remaining part of the object. As the configuration of the Candidates algorithm
struggles with increasing the object size, it is likely that the predicted size will not
be readjusted once the object is no longer occluded by the robot’s hand.

A final, in-depth analysis of the behavior of the different algorithms on exem-
plary sequences from both datasets is provided in section 5.6.

5.5 Realistic constraints and the computational

load

This section analyses the computational load of the different algorithms, with the
goal of determining whether an algorithm is suitable in a real-world setting. The
computational load of the different algorithms is measured by their impact on
the overall frame rate of the HIOB tracker, while the achieved frame rates of the
isolated algorithms are also taken into consideration. Table 5.5 shows the frame
rates of the different algorithms on the NICO dataset, which shows multiple trends
in the frame rate data. The NICO dataset is more relevant for this analysis, because
the NICO sequences show footage of the real world use case with the NICO robot,
compared to the diverse sequences of the TB100.

The baseline HIOB tracker without the SE module achieves an overall frame
rate of 5.841 FPS and, while the lowest overall frame rate is achieved by the DSST
algorithm with the dynamic aspect ration implementation and the Max update
strategy. It should be noted that the overall frame rate of the HIOB tracker was

68



5.5. Realistic constraints and the computational load

slightly higher on the TB100 dataset with 7.86 FPS for the No SE condition. The
difference in the FPS between the two datasets is caused by the fact that the
sequences of the NICO dataset have all been recorded at a resolution of 960× 720,
while most TB100 sequences are of lower resolutions like 640× 480 or 320× 240.

A much wider FPS range can be observed in the isolated FPS ratings of the
SE module, which measures only the frame rate of the specific SE algorithm and
excludes the other HIOB modules that contribute to the tracking process from the
calculation. The FPS data shows that the Candidates algorithm achieves drasti-
cally higher frame rates than the DSST algorithm, while for both algorithms, the
dynamic versions (dynamic aspect ration) of the algorithms achieve significantly
lower frame rates than the static versions (static aspect ration) of the algorithms.
This is not surprising, as the dynamic versions of both algorithms have been imple-
mented by simply applying the algorithm once on the x-axis and once on the y-axis
of the object. This directly increases the time complexity from O(n) to O(2n) for
both algorithms, where n is the number of images in a sequence.

Finally, it can be observed that the CWS update strategy achieves drastically
higher frame rates than the Max update strategy for the SE module, independently
of the algorithm. This is also not surprising because the CWS update strategy skips
the execution of the SE algorithm when HIOBs confidence rating on a frame is
lying out of the confidence window.

Recalling that the computational load of the algorithms is a deciding factor
between whether an algorithm is suited for application in a real-world setting or
not, a relative comparison is not enough. Instead, the absolute achieved frame rates
need to be considered. Heinrich et al. report 11-17 FPS of the HIOB tracker in
combination with the NICO robot, which will be used as a baseline FPS value for
comparison [17]. The absolute difference in the FPS values reported by Heinrich
et al. and the frame rates achieved in this thesis can be attributed to different
versions and configurations of the HIOB tracker.

The absolute achieved frame rates of the SE module indicate, that only the
DSST algorithm introduces significant additional computational load. Further, the
CWS update strategy skips the execution of the SE algorithm on enough frames,
which compensates for the costly execution of the algorithm. Thus, the DSST algo-
rithm in combination with the CWS update strategy poses no significant additional
computational load either. However, executing the DSST algorithm on every frame
(aka using the Max update strategy) causes a significant reduction of the frame
rate. To obtain a better measurement of the computational load associated with
an algorithm, the overall frame rate of the HIOB tracker with the different algo-
rithms is normalized between 0 and the FPS achieved by the No SE condition
(5.841 FPS). This produces a factor for each algorithm, that indicates the speed
of an algorithm compared to the No SE baseline condition. For example, the most
costly algorithm (DSST with dynamic aspect ratio and Max update strategy) run
at 58.4% the speed of the baseline HIOB tracker without scale estimation.

The high cost associated with the DSST algorithm in combination with the
Max update strategy renders the algorithm highly unfavorable for real-world ap-
plications. Even though the DSST algorithm achieves slightly better results with

69



Chapter 5. Evaluation and analysis

Algorithm Overall FPS Norm. overall FPS SE FPS Success Size error

Candidates stat. Full 5.529 0.947 487.093 0.401 73.705

Candidates stat. HGC 5.69 0.974 3237.84 0.508 35.905

Candidates dyn. Full 5.703 0.976 330.096 0.432 61.496

Candidates dyn. HGC 5.753 0.985 2574.431 0.507 33.712

DSST stat. Full 4.71 0.806 26.557 0.495 43.122

DSST stat. HGC 5.906 1.011 388.972 0.512 38.828

DSST dyn. Full 3.409 0.584 8.391 0.488 40.996

DSST dyn. HGC 5.724 0.98 140.382 0.514 35.852

No SE 5.841 1.0 - 0.481 30.262

Table 5.5: Framerates of overall tracker and isolated SE module on both datasets

the CWS update strategy than with the Max update strategy on the NICO dataset,
the generalization that the DSST algorithm always performs better with the CWS
update strategy cannot be made, because on the TB100 dataset, the opposite is
true and the DSST algorithm with the Max updates strategy achieves better re-
sults than the DSST algorithm with the CWS update strategy. Thus, the DSST
algorithm with the dynamic aspect ration implementation and the Max update
strategy must be categorized as too costly for real-world implications. The DSST
algorithm with the static aspect ratio implementation and the Max update strat-
egy is still rather costly with a frame rate of 80.0% compared to the HIOB baseline
without a SE module, is still rather costly, but could be justified with a significant
increase in the results.

Summarizing the section, it is clear that independent of the static or dynamic
aspect ratio implementation and independent of the update strategy, the Candi-
dates algorithm introduces very little additional computational load and is suited
for real-world application, while the DSST algorithm is rather computationally
demanding and depends on the CWS update strategy to reduce its computational
load so that the algorithm can be used for real-world applications.

5.6 In depth sequence analysis

This section finally provides an in-depth analysis of the behavior of the imple-
mented algorithms, by investigating exemplary sequences. It is of main interest to
understand under which conditions the different algorithms achieve good results,
and when under which they fail. Thus, representative good and bad sequences are
equally analyzed for the Candidates and DSST algorithm. Firstly, general perfor-
mance on the full TB100 dataset is analyzed and secondly, the capabilities of the
SE algorithms to deal with the typical challenges introduced on the NICO dataset
are investigated.

70



5.6. In depth sequence analysis

100 200 300 400 500
Frame

0

25

50

75

100

Si
ze

Groundtruth size
Predicted size

Initial size
Size error = 10.54

(a) The size plot of the DSST algorithm
with dynamic aspect ratio implemen-
tation using the Max update strategy,
showing an accurate scale estimation.

100 200 300 400 500
Frame

0

20

40

60

80

100

Si
ze

Groundtruth size
Predicted size

Initial size
Size error = 31.69

(b) The size plot of the DSST algorithm
with dynamic aspect ratio implementa-
tion using the CWS update strategy.
The estimated scale is less accurate, be-
cause the execution of the algorithm has
been skipped due to strong results from
the visual features at unchanged size.

Figure 5.11: The size plots of the DSST algorithm on the TB100 Trellis sequence
showing how the CWS update strategy can result in less accurate scale estimation
results.

5.6.1 Performance on TB100 sequences

The DSST algorithm has already shown to be capable of correctly estimating the
scale of an object in the context of the validation experiment. Similarly, good
results are present in the final results on the complete TB100. It is interesting to
see how the CWS update strategy can affect the outcome of the algorithm because
the CWS update strategy should prevent the algorithm from updating the scale
on bad frames and thus achieve more robust results. A comparison between the
size plots of the DSST algorithm using the Max and the CWS update strategy is
provided in Figure 5.12. The size plot of the DSST algorithm with the dynamic
aspect ratio reveals an initial jump at the 120-th frame, with a second, more severe
jump in size at the 400-th frame mark. To gain a better understanding of the events
that cause the corruption of the scale mode, the key frames have been extracted
and are analyzed in Figure 5.12.

Analyzing the key frames of the sequence FaceOcc1 revealed, that the CWS
update strategy benefits the DSST algorithm because it skips execution of the
algorithm on bad frames, which would result in an inaccurate scale prediction.
Preventing such updates is crucial because if a bad scale is predicted even once, it
can potentially cause HIOBs internal representation model to get corrupted.

Considering how well the CWS update strategy works with the DSST algo-
rithm on the TB100 sequence FaceOcc1, the question arises why the CWS update
strategy does not consistently achieve significantly better results than the Max

71



Chapter 5. Evaluation and analysis

0 200 400 600 800
Frame

0

20

40

60

80

100
Si

ze

Groundtruth size
Predicted size

Initial size
Size error = 14.36

(a) The size plot of the DSST algorithm
with dynamic aspect ratio implementa-
tion using the Max update strategy.

0 200 400 600 800
Frame

0

100

200

Si
ze

Groundtruth size
Predicted size

Initial size
Size error = 106.26

(b) The size plot of the DSST algorithm
with dynamic aspect ratio implementa-
tion using the CWS update strategy.

(c) Frame 139,
with the Max up-
date strategy (top)
the model is partly
trained on the
journal, while with
the CWS update
strategy (bottom)
execution of the
SE module is
skipped.

(d) Frame 225,
with the Max
update strategy
(top), the journal
is completely
enclosed in the
bounding box,
while with the
CWS update
strategy (bottom),
the journal is still
excluded from the
prediction.

(e) Frame 385,
with the Max
update strategy
(top), journal and
face appear to be
equally considered
as the target.
The CWS update
strategy(bottom)
prevents updating
the scale, because
the visual features
corresponding to
the face are still
strong enough.

(f) Frame 523, the
Max update strat-
egy (top) trains
on the complete
journal. The CWS
update strategy
(bottom) prevents
scale estimation
under significant
occlusion.

Figure 5.12: The size plots and key frames of the TB100 FaceOcc1 sequence. Better
results are achieved by the CWS update strategy (bottom row), because the SE
module is not executed under partial occlusion. The ground truth bounding box
is annotated in yellow and the predicted bounding box in magenta.

72



5.6. In depth sequence analysis

update strategy with the DSST algorithm. As indicated earlier, this can partly be
related to different translational predictions, as the results presented in Figure 5.8
are all based on one tracking execution. However, what is also likely contribute
to the overall worse result of the DSST algorithm with the CWS update strategy
on the TB100 is, that slight changes in the scale are ignored because the overall
features are still good enough and updating HIOBs internal object representation
at the slightly different scale is not necessary. How the CWS update strategy can
cause the SE algorithm to achieve worse results is shown in Figure 5.11.

The examples given above indicate, that the DSST algorithm is certainly able
to produce accurate scale estimation results. Using the algorithm does however not
appear to greatly increase the overall tracking results, as shown in Figure 5.8. Thus,
sequences have been identified with the similar precision rating but significantly
different size scores and or success ratings, because under those conditions, it is
likely that the results have been negatively affected by the SE module. To keep this
section short, only the results achieved by the best performing version of the DSST
algorithm (dynamic aspect ratio, Max update strategy) on the TB100 dataset are
considered and compared to the results achieved by the HIOB baseline without
the SE module.

One sequence that shows the negative consequences of employing the SE mod-
ule with the DSST tracker (dynamic aspect ratio, Max update strategy) is the
TB100 Jumping sequence. In the HIOB baseline version, a precision rating of
0.996, with a success rating of 0.561 and a size score of 25.07 has been achieved
on the Jumping sequence. With the use of the DSST algorithm, a precision rat-
ing of 1.0, a success rating of 0.455 and a size score of 62.25 has been achieved,
which is significantly worse than the baseline results. Comparing the size plots in
Figure 5.13, it can be seen that the DSST algorithm significantly decreased the
scale factor at the beginning of the sequence, and never corrected the scale factor
throughout the rest of the sequence. Detailed inspection of the frames in the se-
quences revealed, that an interlacing technique2 has been used on the sequence,
which means that edges from two frames are extracted at all times. Under such
conditions, it is not surprising that a feature extractor that operates based on edge
detection is not performing well, and the bad results of the SE module can be
attributed to this observation.

Generally, sequences of low resolution have been found to be problematic for
the DSST algorithm. This confirms a weakness that has also been reported by
Danelljan et al. [9]. Danelljan et al. reason, that this is due to the HOG feature-
descriptor, which performs poorly at low resolutions. This seems plausible because
the lower resolution of a sequence is, the less clear can the edges be expected to
be.

The TB100 Jumping sequence describes the worst case, where the HIOB base-
line without the use of the SE module achieves higher results than HIOB with
the SE module. There are different examples that could be given, where better

2Interlacing doubles the perceived frame rate (temporal resolution) of a video by combining
signals from two frames into one.

73



Chapter 5. Evaluation and analysis

50 100 150 200 250 300
Frame

0

20

40

60

80

100

Si
ze

Groundtruth size
Predicted size

Initial size
Size error = 25.07

(a) The size plot of the No SE HIOB
baseline

50 100 150 200 250 300
Frame

25

0

25

50

75

100

Si
ze

Groundtruth size
Predicted size

Initial size
Size error = 62.25

(b) The size plot of the DSST algorithm
with dynamic aspect ratio implementa-
tion using the Max update strategy.

(c) Frame 10,
initially the
bounding boxes
are aligned. The
strong edges in the
earlier frames are
not problematic
for the DSST
algorithm.

(d) Frame 54, with
the HIOB baseline
(top), the over-
lap between the
bounding boxes
is still high, while
with usage of the
SE module, the
bounding box has
been decreased in
size

(e) Frame 181,
overlap of the
bounding boxes is
still high in the
HIOB baseline
(top), while with
the SE module the
model representa-
tion is now trained
on the mouth and
nose.

(f) Frame 224,
overlap in the
HIOB baseline re-
mains high (top).
Overlap with
the SE module
remains low, as
the object repre-
sentation has been
decreased to a
smaller part of the
face.

Figure 5.13: The size plots and key frames of the TB100 Jumping sequence. Better
results are achieved by the HIOB baseline. The ground truth bounding box is
annotated in yellow and the predicted bounding box in magenta.

74



5.6. In depth sequence analysis

results are obtained from not using the SE module. Generally, when there is only
little scale variation in a sequence and the sequence has attributes that have been
identified to be problematic with the DSST algorithm (like occlusion, interlacing
techniques or very low resolution), the likelihood is high that not using the SE
module will yield better results.

The best performing version of the Candidates algorithm on the TB100 datasets
uses the dynamic aspect ratio implementation and the CWS update strategy. Inves-
tigating the results of said version of the algorithm revealed, and fails to correctly
react to even significant scale changes under favorable condition (i.e. no occlusion
and relatively high sequence resolution). The results show, that the algorithm only
occasionally (partly because of the update strategy) adapts the scale slightly in
the correct direction, but does not accurately update the scale throughout the se-
quence, an example for this is given in Figure 5.15. This explains why the algorithm
still achieves slightly better results than the HIOB baseline, but the difference be-
tween success rating of the HIOB baseline and the best performing version of the
Candidates algorithm (0.466 and 0.481) are insignificant. It must also be noted,
that the slightly different translational predictions are still a contributing factor in
those scores, which further indicates that the Candidates algorithm with the CWS
update strategy is in its current state not achieving desirable results.

This must, to a certain degree, be attributed to the parameter configuration
that has been obtained in the optimization experiment. The optimization exper-
iment has been conducted using the Max update strategy with the static aspect
ratio implementation, as this can be considered as the most basic version of the
algorithm. For the Max update strategy, the obtained parameter configuration
makes sense. For example, the value of the Scale window step size parameter has
been set to 0.2, which means that each candidates punishment score gets increase
by 0.2%, based on how many scale steps it is off the unchanged scale factor. Such
a high value for this parameter makes sense when the algorithm is executed on
every frame, as it prevents bad frames from immediately corrupting the represen-
tation model and generally corrects the output of the algorithm to bot change the
scale on the smallest changes. For the CWS update strategy, however, a different,
less extreme value is probably adequate, which would have to be confirmed or
dis-proofed by a specific experiment.

On the TB100 Dancer2 sequence, the Candidates algorithm with the CWS up-
date strategy and the Candidates algorithm with the Max update strategy achieved
similar precision ratings (1.0 and 0.99), with divergence in the success rating (0.71
and 0.652) and size score (21.72 and 33.24), which indicates bad performance of
the Candidates algorithm with the Max update strategy. Comparing the size plots
of the TB100 Dancer2 sequence for the Candidates algorithm using the Max and
the CWS update strategy in Figure 5.14, it is observable, that with the Max up-
date strategy, the size has been continually reduced throughout the first 50 frames,
which is never corrected. This is to a certain degree in accordance with the find-
ing from the optimization, where the problem of the Candidates algorithm with
the Max update strategy has been identified, that describes the shrinking of the
bounding box at the beginning of the sequence.

75



Chapter 5. Evaluation and analysis

25 50 75 100 125 150
Frame

0

20

40

60

80

100
Si

ze

Groundtruth size
Predicted size

Initial size
Size error = 33.24

(a) The size plot of the Candidates al-
gorithm with the Max update strategy
and dynamic aspect ratio implementa-
tion.

25 50 75 100 125 150
Frame

0

20

40

60

80

100

Si
ze

Groundtruth size
Predicted size

Initial size
Size error = 21.72

(b) The size plot of the Candidates as-
pect ratio with the CWS update strat-
egy and dynamic aspect ratio imple-
mentation.

(c) Frame 39, with
the Max update
strategy (top), the
size has already
been decreased,
due to low values
at the outer ends
of the object on
the prediction
mask. With the
CWS update
strategy (bottom),
this effect has been
mostly suppressed.

(d) Frame 60, with
the Max update
strategy (top),
the size of the
bounding box has
been further de-
creased, while with
the CWS update
strategy (bottom),
the SE module
is skipped and
the scale remains
unchanged.

(e) Frame 120,
with the Max
update strategy
(top), the scale
is not corrected
because the candi-
date at unchanged
scale is punished
least. With the
CWS update
strategy (bottom),
execution of the
SE module has
been continuously
skipped.

(f) Frame 146,
both update
strategies ter-
minate without
adjusting the scale
again.

Figure 5.14: The size plots and key frames of the TB100 Dancer2 sequence. Better
results are achieved by the CWS update strategy, because it prevents most of the
shrinking out the bounding box that occurs with the Max update strategy. The
ground truth bounding box is annotated in yellow and the predicted bounding box
in magenta.

76



5.6. In depth sequence analysis

Even though this is a rather small error, this error accumulates over multiple
sequences and is likely to be a strong contributor as to why the Candidates algo-
rithm with the CWS update strategy achieves better results than the Candidates
algorithm with the Max updates strategy. The fact that with the CWS update
strategy the Candidates algorithm often fails to accurately adjust the scale seems
to be less of a negative effect than the problem of the initial shrinking of the
bounding box with the Max update strategy.

In accordance with the behavior of the DSST algorithm in combination with the
CWS update strategy, the CWS has the same effect on the Candidates algorithm,
where the algorithm becomes a lot less responsive towards changes in scale. This is
because the algorithm gets executed on fewer frames and as a consequence simply
has fewer chances to adapt the scale (but also fewer chances to output a wrong
scale). This effect is shown in Figure 5.15, where the Candidates algorithm in
combination with the CWS update strategy fails to accurately estimate the scale
of the object, while Candidates algorithm in combination with the Max update
strategy shows desirable scale estimation results.

Summarizing the section, the DSST algorithm has shown to be capable of ac-
curately estimating the scale, while the Candidates algorithm achieves best results
in combination with the CWS update strategy, which limits the algorithms capa-
bilities to decrease the objects scale, specifically at the beginning of the sequences.
Further, for both algorithms, the CWS update strategy has the potential to pre-
vent the SE module from execution on bad frames, but also has the downside
of resulting in a less accurate scale estimation, because small scale changes are
promptly not apprehended, due to the low resolution of the prediction mask.

5.6.2 Performance on NICO sequences

The NICO dataset contains exclusively sequences that show the NICO robot in-
volved in interaction with various objects. Thus, most sequences show the same set
of challenging aspects. For example, during the interaction, the NICO robot tends
to occlude the target object with its hands. The occlusion is differently severe be-
cause the NICO robot shows different techniques for grasping, pushing or pulling
the object, but partial occlusion has a strong presence in the dataset. Similarly
common is a very sudden, strong change in the size of the object, as the actions of
the NICO robot abruptly displace the object, often either closer (pulling or lifting
actions) or further away (pushing actions) from the recording eye camera.

From the previous section, we already know that the CWS update strategy
is helpful in dealing with occlusion, for multiple reasons. Firstly, the execution of
the SE module is entirely skipped when HIOBs prediction quality for the final
prediction on a frame, is too low. Secondly, the remainder of the object that is still
visible and not occluded can still be good enough for tracking, in which case the
execution of the SE module is skipped as well.

Under the consideration of the above, it is expected, that CWS update strategy
achieves significantly better results in combination with the Candidates algorithm
on the NICO dataset. The Candidates algorithm in combination with the Max up-

77



Chapter 5. Evaluation and analysis

0 200 400 600 800
Frame

0

20

40

60

80

100
Si

ze

Groundtruth size
Predicted size

Initial size
Size error = 18.2

(a) The size plot of the Candidates al-
gorithm with the max update strategy
and dynamic aspect ratio implementa-
tion.

0 200 400 600 800
Frame

0

20

40

60

80

100

Si
ze

Groundtruth size
Predicted size

Initial size
Size error = 55.83

(b) The size plot of the Candidates as-
pect ratio with the CWS update strat-
egy and dynamic aspect ratio imple-
mentation.

(c) Frame 129,
with the max
update strategy
(top), the size has
been decreased,
while with the
CWS update
strategy (bottom),
the scale is still
almost at the
initial size.

(d) Frame 412,
with the max
update strategy
(top), the size of
the bounding box
has been further
decreased, while
with the CWS
update strategy
(bottom), the scale
adjustment has
been skipped a lot
and is still close to
the initial size.

(e) Frame 627,
the max update
strategy (top),
maintains a close
estimation of the
scale.The CWS
update strategy
(bottom), prevents
updating the scale
because the visual
features are still
considered good
enough.

(f) Frame 807,
the max update
strategy (top) is
close to the ground
truth bounding
box. Even though
the SE module
is executed with
the CWS update
strategy (bottom),
but it fails to
reduce the scale.

Figure 5.15: The size plots and key frames of the TB100 Car2 sequence, showing
that acceptable results can be achieved with the Max update strategy. Better
results are achieved by the Max update strategy, because the scale estimation
module is executed on every frame and is thus given more chances to adjust the
scale. The ground truth bounding box is annotated in yellow and the predicted
bounding box in magenta.

78



5.6. In depth sequence analysis

date strategy is prone to poor performance under occlusion because if the algorithm
is executed during ongoing occlusion, the bounding box will be decreased to fit the
size of the remainder of the object. Before we investigate exemplary sequences,
it should be noted that the NICO dataset is recorded in high resolution, which
means that the size score on this dataset has higher absolute values. Figure 5.16
gives an example on the NICO lift red car 01 sequence, where the occlusion of the
target object leads to a strong decrease in size, if the Max update strategy is used.
The by now well-known problem of an initial decrease in size with the Candidates
algorithm and the Max update strategy can be observed as well.

The results obtained by the Candidates algorithm in combination with the
CWS update strategy on the NICO dataset are significantly better than the results
from the Candidates algorithm with the Max update strategy. This is because the
CWS update strategy suppresses the unintended shrinking of the bounding box
which occurs when the Candidate algorithm is used in combination with the Max
update strategy. This is in accordance with the findings from the TB100 dataset.
However, the Candidates algorithm in combination with the CWS update strategy
still appears to be incapable of correctly estimating the scale on the NICO dataset.
The example provided in Figure 5.16 can be considered relatively representative for
the other sequences from the NICO dataset. Generally, better results are achieved
by the CWS update strategy with the Candidates algorithm, but even the better
results are the result of preventing bad SE results instead of achieving good SE
results.

The poor performance of the Candidates algorithm on the NICO dataset can be
explained by multiple factors. The Candidates algorithm works on the prediction
map produced by the visual features that are extracted by the VGG16 CNN. Along
with strong occlusion, rotation of the object during interaction is another condition
that occurs frequently in the dataset, which is also difficult for the CNN to handled
and poses a small research field on its own. Finally, many sequences of the NICO
dataset show a peak in the center distance during the interaction with the object,
which indicates that during the interaction, HIOB sometimes tracks the hand of
the robot instead of the actual object. Under consideration of those conditions,
the poor performance of the Candidates algorithm, which operates based on the
values on the prediction which is the output from the VGG16 CNN, can to a
certain degree be justified.

The DSST algorithm achieves consistent results on the NICO dataset with rel-
atively small variance in the obtained success ratings, independently of the update
strategy. The previous findings which indicate that the CWS update strategy re-
duces the overall variance of the SE module at the cost of slightly less accurate
estimation can partly be confirmed on this dataset aswell, which is shown in Fig-
ure 5.16. However, while the results in Figure 5.17 show promising results, for the
fast majority of sequences on the NICO dataset, the DSST algorithm does not
manage to react to the very sudden and quick scale changes introduced by the
NICO robot interaction with the target objects, which explains why the overall
results achieved by the DSST algorithm are only slightly higher than the overall
results of the Candidates algorithm and the baseline condition (which does not use

79



Chapter 5. Evaluation and analysis

0 200 400 600 800
Frame

100

50

0

50

100

Si
ze

Groundtruth size
Predicted size

Initial size
Size error = 166.78

(a) The size plot of the Candidates al-
gorithm with the Max update strategy
and dynamic aspect ratio implementa-
tion.

0 200 400 600 800
Frame

50

0

50

100

Si
ze

Groundtruth size
Predicted size

Initial size
Size error = 95.19

(b) The size plot of the Candidates al-
gorithm with dynamic aspect ratio with
the CWS update strategy and dynamic
aspect ratio implementation.

(c) Frame 68, with
the max update
strategy (top), the
bounding box has
been decreased
to contain only
what has a very
high likelihood
of belong to the
object, while with
the CWS update
strategy (bottom)
did not signifi-
cantly decrease the
scale.

(d) Frame 335,
with the Max
update strategy
(top), the bound-
ing box is further
decreased to the
remainder of the
object, while with
the CWS update
strategy (bottom),
SE execution is
skipped.

(e) Frame 472,
the Max update
strategy (top)
maintains the
strongly decreased
scale. The CWS
update strategy
(bottom) never
decreased the
scale as drastically
and still achieves
relatively high
overlap.

(f) Frame 713,
without further
adjustments to the
scale, both algo-
rithms terminate
with an overall too
small bounding
box.

Figure 5.16: The size plots and key frames of the NICO lift red car1 sequence.
The jump in scale between frame 200 and 400 is caused by initial lifting, follows
by dropping of the target object. Better results are achieved by the CWS update
strategy, because the CWS update strategy skipped the execution of the SE module
under occlusion. The ground truth bounding box is annotated in yellow and the
predicted bounding box in magenta.

80



5.6. In depth sequence analysis

the SE module). Instead, the results on the NICO push blue ball are likely to as
good because only very few to none occlusion takes places during the interaction
of the NICO robot with the ball, which enables the algorithm to compute the scale
factors without significant problems.

Summarizing this section, the general relationships and properties of the algo-
rithms and their combination with the update strategies are the same as on the
TB100 dataset. The Max update strategy in combination with the Candidates al-
gorithm decreases the scale too much, which happens because the outer borders
of the object, the likelihoods on the prediction mask are smaller than at the inner
area. The Candidates algorithm with the CWS update strategy achieves better
results than when the Max update strategy is employed, because the CWS update
strategy limits the described unintended decrease in size, but does not accurately
estimate the scale either. The DSST algorithm achieves good results on a small
amount of the NICO sequences but fails to capture the very abrupt scale changes
introduced in the robot interaction environment.

81



Chapter 5. Evaluation and analysis

100 200 300 400 500 600
Frame

0

20

40

60

80

100

Si
ze

Groundtruth size
Predicted size

Initial size
Size error = 12.75

(a) The size plot of the DSST algorithm
with the Max update strategy and dy-
namic aspect ratio implementation.

100 200 300 400 500 600
Frame

0

20

40

60

80

100

Si
ze

Groundtruth size
Predicted size

Initial size
Size error = 17.89

(b) The size plot of the DSST algo-
rithmwith the HGC update strategy
and dynamic aspect ratio implementa-
tion.

(c) Frame 218,
both the Max up-
date strategy (top)
and the CWS
update strategy
(bottom) shows
bounding boxes
close to the ground
truth. Representa-
tion updates have
been trigger by
occasional, slight
shadows being cast
on the canvas.

(d) Frame 293,
both update
strategies maintain
similar bounding
boxes, while with
the CWS update
strategy (bottom),
execution of the
SE module has
been skipped
during robot inter-
action, resulting in
a slightly bigger
bounding box.

(e) Frame 322,
the Max update
strategy (top)
adjusted to the
scale decrease.
The CWS update
strategy (bottom)
fails to adjust
the scale, possi-
ble because the
recent predictions
were not properly
centered on the
ball.

(f) Frame 493,
the Max update
strategy (top)
adjusted to the re-
turning ball, while
the CWS update
strategy (bottom)
still reacts to the
returning ball by
increasing the
scale.

Figure 5.17: The size plots and key frames of the NICO push blue ball sequence.
Slightly better results are achieved by the Max update strategy, because faster
adjustments can be made. The ground truth bounding box is annotated in yellow
and the predicted bounding box in magenta.

82



Chapter 6

Conclusions

The main goal of this thesis is to provide a solution to the problem of scale esti-
mation in visual object tracking. For that, an analysis of the available algorithms
in state-of-the-art trackers has been conducted and two algorithms have been se-
lected, implemented, and thoroughly tested.

6.1 Summary of Contributions

The main contribution of this thesis is the implementation of a new module in the
HIOB tracking framework, which is capable of accurately estimating the scale of the
target object during tracking. To achieve this goal, two separate algorithms have
been implemented, namely the scaled candidates algorithm and the DSST scale
estimation algorithm by Danelljan et al. [9]. Both algorithms have been extended
to feature independent scaling on the x and y-axis and can be configured to use
different update strategies.

6.1.1 Scale estimation algorithms

The first algorithm that has been implemented in the SE module, is dubbed the
scaled candidates algorithm. The algorithm has been proposed by Peer Springstübe
as an extension to the HIOB tracking framework [30]. The scaled candidates algo-
rithm has been extended to be capable of handling slight rotations and transforma-
tions of the target object, by maintaining two separate scale factors, one factor for
the x and one for the y-axis. This feature has been shown to consistently achieve
slightly better results than the one-factor counterpart.

The second algorithm that has been implemented is referred to as the DSST
algorithm throughout this thesis and has been introduced by Danelljan et al. [8, 9].
In accordance with the work on the Candidates algorithm, the DSST algorithm
has also been extended to feature the independent scaling on the x and y-axis.

In his original work on the HIOB tracking framework, Peer Springstübe found
that specific update strategies can prevent HIOBs internal representation model
from being trained on bad frames. Motivated by this finding, the best performing

83



Chapter 6. Conclusions

update strategy has been adapted and the two scale estimation algorithms are
configurable to either use the Confidence window strategy or be executed on every
frame.

6.1.2 The size error metric

To obtain a specific measurement for the performance of the SE module, a new
metric has been introduced, dubbed the size error. The size error obtains a nu-
merical rating for how similar the sizes of the predicted bounding box and the
ground truth bounding box are, by accumulating the difference in the products of
the x and y-axis values for each frame. This is a different measurement as the suc-
cess metric because the success metric measures the overlap between the predicted
bounding box and the ground truth bounding box.

With the size error, the behavior of the different versions of the two main
algorithms has been analyzed, which revealed how the update strategies affect
the scale estimation algorithms. The size error has also underlined the difference
between the scale variation challenges on the TB100 dataset in comparison to those
present on the NICO dataset.

6.2 Discussion

Throughout this thesis, insight has been gained regarding the performance of the
two SE algorithms and a clear trend regarding the update strategies has been
identified. The DSST algorithm has been proven to be capable of accurately esti-
mating the scale of arbitrary objects in various tracking sequences from the TB100.
Intended behavior of the algorithm has been confirmed by an extra experiment,
comparing the results achieved of the reference DSST tracker and the HIOB tracker
with the SE module. For this, the SE module has been configured to use the DSST
algorithm with the static bounding box implementation and to execute the algo-
rithm on every frame. While the overall results of the HIOB tracker were not as
good as the results achieved by Danelljan et al.’s DSST tracker, the implementa-
tion of the algorithm in HIOB still shows strong scale estimation results, and the
results could partly be explained by identifying outliers in the results that were
caused by misplaced predictions. Consistently slightly less accurate estimation of
the scale with the HIOB implementation of the algorithm has been identified and
is likely to be caused by different feature extractor implementations.

The scaled candidates algorithm with its current parameter configuration does
not achieve satisfying scale estimation results. Although the algorithm has shown
accurate scale estimation results on a few sequences from the TB100 dataset, even
strong scale variations under favorable conditions are not always correctly handled
by the algorithm. The fact that the algorithm does show good results on a few
sequences however indicates, that the configuration obtained from the optimization
experiment might not be ideal, as the behavior of the algorithm can be explained
by the parameter values obtained from the configuration.

84



6.3. Future Work

Regarding the update strategies, the confidence window strategy shows to be-
have as expected, meaning the update strategy prevented the execution of the
SE module on frames that could potentially lead to the production of bad scale
factors. This has been shown to greatly benefit the scaled candidates algorithm.
The DSST algorithm does not benefit from the CWS as much as the scaled can-
didates algorithm does, however, when facing the challenging aspects from the
NICO dataset, the DSST algorithm achieved best results with the confidence win-
dow update strategy. This allows the conclusion, that the HGC update strategy is
applicable to scale estimation, but also results in a slightly broader approximation
of the scale.

Finally, the extension of the two algorithms which enables a dynamic aspect ra-
tion has been shown to be partly beneficial. On the TB100, both algorithms achieve
best results when the dynamic aspect ratio implementation is used. However, the
increase in the success rating is marginal, and specifically for the DSST algorithm,
the additional computational load is not justified by such a small increase in the
success rating.

The sequences of the NICO dataset have shown to be very challenging for both
algorithms. Even the DSST algorithm that shows strong scale estimation results
on many sequences of the TB100 dataset does not manage to successfully handle
the abrupt, fast, and partially occluded scale changes that are present on the NICO
dataset.

Considering the research objectives, with the DSST algorithm a state-of-the-
art algorithm has been found that is applicable to the HIOB framework and its
combination with the NICO robot. The computational load of the static version of
the algorithm has been found, when executed on every frame, to decrease HIOBs
frame rate by 20%. However, when the confidence window update strategy is em-
ployed, the DSST algorithm does not result in a significant decrease in processing
speed. This satisfies the main constraints of the developmental robotics, which is
the necessity of operating in real time. Further, the main challenge of scale estima-
tion has identified as the need to adapt the internal model representation to the
changing scale. In the HIOB framework, this has been achieved by implementing
the scale estimation module, so that the scale adapted object representation can
be learned online.

6.3 Future Work

Evaluating the results achieved by the scaled candidates algorithm on the TB100
and NICO dataset revealed multiple problems with the configuration that has been
obtained by optimizing the scaled candidate parameters independently of one an-
other. Changing the scale is punished by a large factor, which explains why the
algorithm failed to often accurately adapt to the scale changes of different objects.
Additionally, the algorithm tends to decrease the scale even when the object is
static and not decreasing its size because the values on the outer borders of the
object have a lower likelihood of belonging to the object and thus, candidates are

85



Chapter 6. Conclusions

punished for containing the borders. This behavior is controllable by the values
of the Inner punish threshold and Outer punish threshold parameters and could
be prevented. As described in subsection 5.1.4, the baseline configuration used for
optimization might not have been ideal, which explains why the best results were
obtained when changing the scale was strongly punished. Thus, further investiga-
tion regarding the parameter setting for the scaled candidates algorithm is likely
to yield better results.

Additionally, in the DSST validation experiment, it has been revealed that
the DSST algorithm as implemented in HIOB consistently achieves slightly less
accurate scale estimation results than the reference implementation by Danelljan
et al [9]. It is likely that this occurs because of implementation details in the HOG
features descriptor, Investigating this would be interesting because it is possible
that with a better feature descriptor, the algorithm might be capable of handling
the scale variations on the NICO dataset.

Danelljan et al. propose different strategies to reduce the cost associated with
the DSST algorithm that have not been implemented in this thesis. Building upon
the promising scale estimation results shown by the algorithm, those could be
implemented to further lower the computational cost of the algorithm.

As the main challenges on the NICO dataset have been identified to be the
combination of occlusion and fast scale changes, the texture of the target could
be extracted using local binary patterns and maintained as an additional feature
channel (next to HOG), to help with the partial occlusion from NICOs hands [26].
Further, instead of using a Hann window to smooth the scale output, a momentum
strategy could be implemented to cope with the sudden scale variation of the NICO
dataset.

This thesis provides a viable solution for scale estimation in a CNN based track-
ing context. By employing a specific metric, deep understanding of the behavior of
the different scale estimation algorithms has been obtained and it could be shown
how the use of an update strategy can help to produce a more stable estimation
of the scale.

86



Bibliography

[1] Ning An, Shi-Ying Sun, Xiao-Guang Zhao, and Zeng-Guang Hou. Remem-
ber like humans: Visual tracking with cognitive psychological memory model.
International Journal of Advanced Robotic Systems, 14(1), 2017.

[2] Boris Babenko, Ming-Hsuan Yang, and Serge Belongie. Robust object track-
ing with online multiple instance learning. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33(8):1619–1632, Aug 2011.

[3] David. S Bolme, J. Ross Beveridge, Bruce A. Draper, and Yui. M. Lui. Visual
object tracking using adaptive correlation filters. In 2010 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages 2544–
2550, June 2010.

[4] David. S. Bolme, Bruce. A. Draper, and J. Ross Beveridge. Average of syn-
thetic exact filters. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 2105–2112, June 2009.

[5] Ronald Newbold Bracewell. The Fourier transform and its applications;
2nd ed. McGraw-Hill series in electrical engineering. Circuits and systems.
McGraw-Hill, New York, NY, 1986.

[6] Navneet Dalal and Bill Triggs. Histograms of Oriented Gradients for Human
Detection. In Cordelia Schmid, Stefano Soatto, and Carlo Tomasi, editors,
International Conference on Computer Vision & Pattern Recognition (CVPR
’05), volume 1, pages 886–893, San Diego, United States, June 2005. IEEE
Computer Society.

[7] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg. Dsst tracker ref-
erence implementation. http://www.cvl.isy.liu.se/research/objrec/

visualtracking/scalvistrack/index.html, 2017. [Online; accessed 8-
April-2019].

[8] Martin Danelljan, Gustav Häger, Fahad Shahbaz Khan, and Michael Felsberg.
Accurate scale estimation for robust visual tracking. In Proceedings of the
British Machine Vision Conference 2014 :. BMVA Press, 2014.

[9] Martin Danelljan, Gustav Häger, Fahad Khan, and Michael Felsberg. Dis-
criminative scale space tracking. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39(8):1561–1575, Aug 2017.

87

http://www.cvl.isy.liu.se/research/objrec/visualtracking/scalvistrack/index.html
http://www.cvl.isy.liu.se/research/objrec/visualtracking/scalvistrack/index.html


Bibliography

[10] Piotr Dollár. Piotr’s Computer Vision Matlab Toolbox (PMT). https://

github.com/pdollar/toolbox. [Online; accessed 8-April-2019].

[11] Qianyun Du, Zhao-quan Cai, Hao Liu, and Zhu Liang Yu. A rotation adaptive
correlation filter for robust tracking. In 2015 IEEE International Conference
on Digital Signal Processing (DSP), pages 1035–1038, July 2015.

[12] Richard O. Duda and Peter E. Hart. Pattern classification and scene analysis.
1973.

[13] Pedro Felzenszwalb, Ross Girshick, David McAllester, and Deva Ramanan. Vi-
sual object detection with deformable part models. Commun. ACM, 56(9):97–
105, September 2013.

[14] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing (3rd
Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

[15] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The
MIT Press, 2016.

[16] Sion Hannuna, Massimo Camplani, Jake Hall, Majid Mirmehdi, Dima Damen,
Tilo Burghardt, Adeline Paiement, and Lili Tao. Ds-kcf: a real-time tracker
for rgb-d data. Journal of Real-Time Image Processing, Nov 2016.

[17] Stefan Heinrich, Peer Springstübe, Tobias Knöppler, Matthias Kerzel, and
Stefan Wermter. Continuous convolutional object tracking in developmental
robot scenarios. Neurocomputing, page 8, Feb 2019.

[18] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. Tracking-learning-
detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,
34(7):1409–1422, July 2012.

[19] Matthias Kerzel, Erik Strahl, Sven Magg, Nicolás Navarro-Guerrero, Stefan
Heinrich, and Stefan Wermter. Nico - neuro-inspired companion: A develop-
mental humanoid robot platform for multimodal interaction. In Proceedings
of the IEEE International Symposium on Robot and Human Interactive Com-
munication (RO-MAN), pages 113–120, Aug 2017.

[20] Reinhard Klette. Concise Computer Vision: An Introduction into Theory and
Algorithms. Springer Publishing Company, Incorporated, 2014.

[21] Tobias Knöppler. Visual object tracking for robotic applications. Bachelor’s
thesis, University of Hamburg, dept. Knowledge Technology, 2017.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

88

https://github.com/pdollar/toolbox
https://github.com/pdollar/toolbox


Bibliography

[23] Yann LeCun, Y Bengio, and Geoffrey Hinton. Deep learning. Nature, 521:436–
44, 05 2015.

[24] Yann Lecun, Bernhard E. Boser, John S. Denker, Donnie Henderson, R. E.
Howard, Wayne Hubbard, and Lawrence D. Jackel. Handwritten digit recogni-
tion with a back-propagation network. In David Touretzky, editor, Advances in
Neural Information Processing Systems (NIPS 1989), Denver, CO, volume 2.
Morgan Kaufmann, 1990.

[25] Yang Li and Jianke Zhu. A scale adaptive kernel correlation filter tracker with
feature integration. In Lourdes Agapito, Michael M. Bronstein, and Carsten
Rother, editors, Computer Vision - ECCV 2014 Workshops, pages 254–265,
Cham, 2015. Springer International Publishing.

[26] Kourosh Meshgi, Maeda. Shin-ichi, Shigeyuki Oba, Henrik Skibbe, Yu-zhe Li,
and Shin Ishii. An occlusion-aware particle filter tracker to handle complex
and persistent occlusions. Computer Vision and Image Understanding, 150:81
– 94, 2016.

[27] Nayyab Naseem and Mehreen Sirshar. Target tracking in real time surveillance
cameras and videos. CoRR, abs/1506.06659, 2015.

[28] David A. Ross, Jongwoo Lim, Ruei-Sung Lin, and Ming-Hsuan Yang. Incre-
mental learning for robust visual tracking. International Journal of Computer
Vision, 77(1):125–141, May 2008.

[29] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. CoRR, abs/1409.1556, 2014.

[30] Peer Springstübe. Object tracking with convolutional neural networks.
Diploma thesis, University of Hamburg, dept. Knowledge Technology, 2017.

[31] Chong Sun, Dong Wang, Huchuan Lu, and Ming-Hsuan Yang. Learning
spatial-aware regressions for visual tracking. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

[32] Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu. Visual track-
ing with fully convolutional networks. In The IEEE International Conference
on Computer Vision (ICCV), December 2015.

[33] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Online object tracking: A
benchmark. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2013.

[34] Yulong Xu, Jiabao Wang, Hang Li, Yang Li, Zhuang Miao, and Yafei Zhang.
Patch-based scale calculation for real-time visual tracking. IEEE Signal Pro-
cessing Letters, 23(1):40–44, Jan 2016.

89



Bibliography

[35] Hanxuan Yang, Ling Shao, Feng Zheng, Liang Wang, and Zhan Song. Re-
cent advances and trends in visual tracking: A review. Neurocomputing,
74(18):3823 – 3831, 2011.

90



Erklärung der Urheberschaft

Hiermit versichere ich an Eides statt, dass ich die vorliegende Bachelorthesis im
Studiengang Human-Computer Interaction selbstständig verfasst und keine an-
deren als die angegebenen Hilfsmittel - insbesondere keine im Quellenverzeichnis
nicht benannten Internet-Quellen – benutzt habe. Alle Stellen, die wörtlich oder
sinngemäß aus Veröffentlichungen entnommen wurden, sind als solche kenntlich
gemacht. Ich versichere weiterhin, dass ich die Arbeit vorher nicht in einem an-
deren Prüfungsverfahren eingereicht habe und die eingereichte schriftliche Fassung
der auf dem elektronischen Speichermedium entspricht.

Ort, Datum Unterschrift

91





Erklärung zur Veröffentlichung

Ich stimme der Einstellung der Bachelorthesis in die Bibliothek des Fachbereichs
Informatik zu.

Ort, Datum Unterschrift

93




	1 Introduction
	1.1 Research objective
	1.2 Organization of this thesis

	2 Basics
	2.1 Defining the tracking task
	2.1.1 Introducing the bounding box

	2.2 Correlation and convolution
	2.3 The frequency domain an its properties
	2.4 Basic correlation filtering
	2.5 Advanced correlation filters
	2.5.1 ASEF correlation filters
	2.5.2 MOSSE correlation filters

	2.6 Convolutional neural networks
	2.6.1 Tracking with CNNs

	2.7 Histogram of oriented gradients
	2.8 A word on in-plane rotation

	3 Related work
	3.1 The fully convolutional hierarchical object tracker HIOB
	3.2 On computational load and real-time performance
	3.3 Possible algorithms for scale estimation
	3.3.1 Using depth-sensors
	3.3.2 Patch-based
	3.3.3 Sample-based


	4 Approach
	4.1 Dealing with the computational load
	4.2 The scaled candidates approach
	4.2.1 Generating additional candidates
	4.2.2 Rating an individual candidate
	4.2.3 Candidate selection
	4.2.4 Candidates: Static aspect ratio
	4.2.5 Candidates: Dynamic aspect ratio

	4.3 The DSST algorithm
	4.3.1 DSST: Dynamic aspect ratio

	4.4 Update Strategies
	4.4.1 The max update strategy
	4.4.2 The confidence window strategy

	4.5 Datasets
	4.6 Evaluation metrics
	4.6.1 The precision plot
	4.6.2 The success plot
	4.6.3 The size error


	5 Evaluation and analysis
	5.1 Parameter optimization
	5.1.1 DSST optimization: Parameter settings
	5.1.2 DSST optimization: Results
	5.1.3 Scaled candidates: Parameter settings
	5.1.4 Scaled candidates optimization: Results

	5.2 Validation of the DSST algorithm
	5.3 Performance on the TB100 dataset
	5.4 Performance on the NICO dataset
	5.5 Realistic constraints and the computational load
	5.6 In depth sequence analysis
	5.6.1 Performance on TB100 sequences
	5.6.2 Performance on NICO sequences


	6 Conclusions
	6.1 Summary of Contributions
	6.1.1 Scale estimation algorithms
	6.1.2 The size error metric

	6.2 Discussion
	6.3 Future Work

	Bibliography

